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From Aldous (1983). Exchangeability and Related Topics.

Also: O. Kallenberg. (2006). Probabilistic Symmetries and Invariance Principles.

Today: Mostly post-2015 results relating to exchangeability.
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Notation and Terminology

Network: Abstract, non-mathematical concept. A structure of interconnected
and/or interacting entities.
Graph: a pair (V ,E) consisting of sets V (vertices) and E ⊂ V × V (vertices).

Encoded as {0, 1}-valued adjacency array y = (yij )i,j∈V with

yij =

{
1, (i, j) ∈ E ,
0, otherwise.

Edge-labeled graph: Equivalence class of structures formed out of edge
sequences (formal definition later).
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Variations of exchangeability

1 Exchangeability (conventional): X =D Xσ = (Xσ(i)σ(j))i,j≥1 for all permutations
σ : N → N.

2 Relative exchangeability: M represents heterogeneity of a population and X is
exchangeable relative to the symmetries of M.

3 Relational exchangeability: Exchangeability with respect to relabeling relations
(species, edges, paths, networks, etc.)
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Exchangeable random graphs
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Vertex relabeling

Data: Y = (Yij )i,j∈V ∈ {0, 1}V×V .

Symmetries: Any permutation σ : V → V determines a relabeling map

y 7→ yσ := (yσ(i)σ(j))i,j∈V .

Graph on the right obtained by relabeling graph on left with
σ(1) = 4, σ(2) = 2, σ(3) = 1, σ(4) = 7, σ(5) = 3, σ(6) = 5, σ(7) = 6.
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(Vertex) exchangeability

Definition ((Vertex) exchangeability)
A random graph Y = (Yij )i,j∈V is (vertex) exchangeable if

Yσ =D Y for all permutations σ : V → V .

Equivalently,

P(Y ∈ Aσ) = P(Y ∈ A) for all permutations σ : V → V ,

where Aσ = {yσ : y ∈ A} obtained by relabeling all elements of A according to σ.

A vertex exchangeable distribution assigns equal probability to isomorphic graphs.
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de Finetti’s theorem

A sequence X = (X1,X2, . . .) is exchangeable if

Xσ = (Xσ(1),Xσ(2), . . .) =D X for all permutations σ : N → N .

Theorem (de Finetti)
Let X = (X1,X2, . . .) be a countable, exchangeable {0, 1}-valued sequence. Then
there exists a unique probability measure µ on [0, 1] such that the finite-dimensional
distributions of X are given by

Pr((X1, . . . ,Xn) = (x1, . . . , xn)) =

∫ 1

0
p
∑

i xi (1− p)n−
∑

i xiµ(dp).

Intuition:
Pick a coin with a random heads-probability (according to µ).
Toss the coin repeatedly to generate X.

An exchangeable sequence is a mixture of i.i.d. sequences.

Analogous theorem holds for countably exchangeable sequences in any nice
enough probability space.
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de Finetti’s theorem: alternative representation

Theorem (de Finetti)
Let X = (X1,X2, . . .) be an exchangeable {0, 1}-valued sequence. Then there exists a
measurable function φ : [0, 1]× [0, 1]→ {0, 1} such that X =D X∗ = (X∗1 ,X

∗
2 , . . .),

where
X∗j = φ(U∅,U{j}), j ≥ 1,

for U∅, (U{i})i≥1 i.i.d. Uniform[0, 1].

Pick a coin with a random heads-probability (according to µ).

Toss the coin repeatedly to generate X.

Shared dependence on U∅ is the only source of dependence among variables.

Fix U0 = α, then X∗j = φ(α,U{j}) is i.i.d.

Exchangeable sequence is conditionally i.i.d.

Harry Crane Symmetry and Networks Midwest Probability Colloquium 12 / 58



de Finetti’s theorem: alternative representation

Theorem (de Finetti)
Let X = (X1,X2, . . .) be an exchangeable {0, 1}-valued sequence. Then there exists a
measurable function φ : [0, 1]× [0, 1]→ {0, 1} such that X =D X∗ = (X∗1 ,X

∗
2 , . . .),

where
X∗j = φ(U∅,U{j}), j ≥ 1,

for U∅, (U{i})i≥1 i.i.d. Uniform[0, 1].

Pick a coin with a random heads-probability (according to µ).

Toss the coin repeatedly to generate X.

Shared dependence on U∅ is the only source of dependence among variables.

Fix U0 = α, then X∗j = φ(α,U{j}) is i.i.d.

Exchangeable sequence is conditionally i.i.d.

Harry Crane Symmetry and Networks Midwest Probability Colloquium 13 / 58



de Finetti’s theorem: alternative representation

Theorem (de Finetti)
Let X = (X1,X2, . . .) be an exchangeable {0, 1}-valued sequence. Then there exists a
measurable function φ : [0, 1]× [0, 1]→ {0, 1} such that X =D X∗ = (X∗1 ,X

∗
2 , . . .),

where
X∗j = φ(U∅,U{j}), j ≥ 1,

for U∅, (U{i})i≥1 i.i.d. Uniform[0, 1].

Pick a coin with a random heads-probability (according to µ).

Toss the coin repeatedly to generate X.

Shared dependence on U∅ is the only source of dependence among variables.

Fix U0 = α, then X∗j = φ(α,U{j}) is i.i.d.

Exchangeable sequence is conditionally i.i.d.

Harry Crane Symmetry and Networks Midwest Probability Colloquium 14 / 58



Exchangeable random graphs

A random array Y = (Yi,j )i,j≥1 is exchangeable if

Yσ = (Yσ(i)σ(j))i,j≥1 =D Y for all permutations σ : N → N .

Theorem (Aldous–Hoover–Kallenberg)
Let Y be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function φ : [0, 1]4 → {0, 1} such that
Y =D Y∗ = (Y ∗ij )i,j∈N , where

Y ∗ij = φ(U∅,U{i},U{j},U{i,j}), i, j ≥ 1,

for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1].

Decomposes structure of exchangeable random graph:

Global effect: U∅
Vertex effects: U{i}, U{j}
Edge effects: U{i,j}
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Exchangeable random graphs

A random array Y = (Yi,j )i,j≥1 is exchangeable if

Yσ = (Yσ(i)σ(j))i,j≥1 =D Y for all permutations σ : N → N .

Theorem (Aldous–Hoover–Kallenberg)
Let Y be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function φ : [0, 1]4 → {0, 1} such that
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for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1].

Decomposes structure of exchangeable random graph:

Global effect: U∅ (shared by all edges)

Vertex effects: U{i}, U{j}
Edge effects: U{i,j}
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Exchangeable random graphs

A random array Y = (Yi,j )i,j≥1 is exchangeable if

Yσ = (Yσ(i)σ(j))i,j≥1 =D Y for all permutations σ : N → N .

Theorem (Aldous–Hoover–Kallenberg)
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Global effect: U∅
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Edge effects: U{i,j}
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Exchangeable random graphs

A random array Y = (Yi,j )i,j≥1 is exchangeable if

Yσ = (Yσ(i)σ(j))i,j≥1 =D Y for all permutations σ : N → N .

Theorem (Aldous–Hoover–Kallenberg)
Let Y be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function φ : [0, 1]4 → {0, 1} such that
Y =D Y∗ = (Y ∗ij )i,j∈N , where

Y ∗ij = φ(U∅,U{i},U{j},U{i,j}), i, j ≥ 1,

for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1].

Decomposes structure of exchangeable random graph:

Global effect: U∅
Vertex effects: U{i}, U{j}
Edge effects: U{i,j} (only for edge between i and j)
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Dissociated random graphs

Definition (Dissociated array)
A random array Y = (Yij )i,j≥1 is dissociated if

Y |S and Y |T are independent for all S,T ⊆ N such that S ∩ T = ∅.

Fix U∅ = α in Aldous–Hoover: for S ∩ T = ∅:
Y∗ |S = (φ(α,U{i},U{j},U{i,j}))i,j≥S depends on U{i},U{j},U{i,j} indexed by S.

Y∗ |T = (φ(α,U{i},U{j},U{i,j}))i,j≥T depends on U{i},U{j},U{i,j} indexed by T .

Every exchangeable random graph is a mixture of dissociated, exchangeable
graphs.

Example:

Erdős–Rényi model: all edges are i.i.d. (φ depends only on last argument.)

Graphon models: let g : [0, 1]× [0, 1]→ [0, 1], let U1,U2, . . . i.i.d. Uniform[0, 1] and
let

P(Yij = 1 | Ui ,Uj ) = g(Ui ,Uj ), i, j ≥ 1.
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Graph limits

Let G = (Gij )i,j∈N be a countable graph and F = (Fij )1≤i,j≤m be a graph with vertex set
[m] = {1, . . . ,m}.

For each n ≥ 1, define

tn(F ,G) =
1

n↓m
∑

injections ψ:[m]→[n]

1(Gψ = F ).

The homomorphism density of F in G is the limit

t(F ,G) = lim
n→∞

tn(F ,G) if the limit exists.

G possesses a graph limit if t(F ,G) exists for all finite F , for all m ≥ 1.

Corollary
Graph limits←→ exchangeable, dissociated probability measures on countable graphs.

Immediate implications:

(i) Dense structure: Exchangeable random graph =⇒ dense or empty w.p. 1.

(ii) Representative sampling: normalizing constant 1/n↓m interpreted as assigning
equal probability (uniform distribution) on all ψ-sampling maps.
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Graph limits

Let G = (Gij )i,j∈N be a countable graph and F = (Fij )1≤i,j≤m be a graph with vertex set
[m] = {1, . . . ,m}.

For each n ≥ 1, define

tn(F ,G) =
1

n↓m
∑

injections ψ:[m]→[n]

1(Gψ = F ).

The homomorphism density of F in G is the limit

t(F ,G) = lim
n→∞

tn(F ,G) if the limit exists.

G possesses a graph limit if t(F ,G) exists for all finite F , for all m ≥ 1.

Corollary
Graph limits←→ exchangeable, dissociated probability measures on countable graphs.

Open Problem
Define and study an interesting notion of asymptotics for sparse/complex networks.

Harry Crane Symmetry and Networks Midwest Probability Colloquium 21 / 58



Relative exchangeability
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Relative symmetries

Definition (Relative exchangeability)
Invariance with respect to the symmetries of another structure.

Population N = {1, 2, . . .} divides into two classes, e.g., male and female.

Define C = (C1,C2, . . .) by

Ci =

{
1, i is male,
0, otherwise.

(X1,X2, . . .) is relatively exchangeable with respect to C, i.e., Xσ =D X for
permutations σ : N → N that fix C.

C 1 1 0 1 0 0 1
X X1 X2 X3 X4 X5 X6 X7

X′ X2 X4 X3 X1 X6 X5 X7

X =D X′
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Relatively exchangeable sequences

Definition (Relative exchangeability)
Invariance with respect to the symmetries of another structure.

Population N = {1, 2, . . .} divides into two classes, e.g., male and female.

Define C = (C1,C2, . . .) by

Ci =

{
1, i is male,
0, otherwise.

Measurements (X1,X2, . . .) are relatively exchangeable with respect to C, i.e.,
Xσ =D X for permutations σ : N → N that fix C.

Theorem
Let C = (C1,C2, . . .) be [k ]-valued sequence* and X = (X1,X2, . . .) be relatively
exchangeable with respect to C. Then there exists a measurable
φ : [k ]× [0, 1]2 → {0, 1} such that X =D X∗ = (X∗i )i≥1 with

X∗i = φ(Ci ,U∅,U{i}), i ≥ 1,

for U∅ and (U{i})i≥1 i.i.d. Uniform[0, 1].
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Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)
Y is relatively exchangeable with respect to G if, for all S ⊆ N, Y |σS =D Y |S for all
automorphisms σ of G|S .
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Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, for all S ⊆ N, Y |σS =D Y |S for all
automorphisms σ of G|S .

Theorem (C. 2017)
Let G = (N,E) be an undirected graph* and Y be relatively exchangeable with respect
to G. There exists φ : {0, 1} × [0, 1]4 → {0, 1} such that Y =D Y∗ = (Y ∗ij )i,j≥1 with

Y ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1

where

Gij =

{
1, (i, j) ∈ E ,
0, otherwise.

relatively exchangeable (structural) component

exchangeable (Aldous–Hoover) component

Harry Crane Symmetry and Networks Midwest Probability Colloquium 26 / 58



Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, for all S ⊆ N, Y |σS =D Y |S for all
automorphisms σ of G|S .

Theorem (C. 2017)
Let G = (N,E) be an undirected graph* and Y be relatively exchangeable with respect
to G. There exists φ : {0, 1} × [0, 1]4 → {0, 1} such that Y =D Y∗ = (Y ∗ij )i,j≥1 with

Y ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1

where

Gij =

{
1, (i, j) ∈ E ,
0, otherwise.

relatively exchangeable (structural) component

exchangeable (Aldous–Hoover) component

Harry Crane Symmetry and Networks Midwest Probability Colloquium 27 / 58



Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, for all S ⊆ N, Y |σS =D Y |S for all
automorphisms σ of G|S .

Theorem (C. 2017)
Let G = (N,E) be an undirected graph* and Y be relatively exchangeable with respect
to G. There exists φ : {0, 1} × [0, 1]4 → {0, 1} such that Y =D Y∗ = (Y ∗ij )i,j≥1 with

Y ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1

where

Gij =

{
1, (i, j) ∈ E ,
0, otherwise.

relatively exchangeable (structural) component

exchangeable (Aldous–Hoover) component

Harry Crane Symmetry and Networks Midwest Probability Colloquium 28 / 58



General case

M: general combinatorial structure

Y is M-exchangeable (exchangeable relative to M):

Sequence: M = (M1,M2, . . .) ∈ {0, 1}N ,

Yi = φ(Mi ,U∅,U{i}), i ≥ 1.

Graph: M = (Mij )i,j≥1 ∈ {0, 1}N ×N ,

Yij = φ(Mij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1.

Lack of interference: Both exhibit strong local dependence on M.

Does this lack of interference hold in general? No.

What properties must M satisfy to get the representation?

Harry Crane Symmetry and Networks Midwest Probability Colloquium 29 / 58



General case

M: general combinatorial structure

Y is M-exchangeable (exchangeable relative to M):

Sequence: M = (M1,M2, . . .) ∈ {0, 1}N ,

Yi = φ(Mi ,U∅,U{i}), i ≥ 1.

Graph: M = (Mij )i,j≥1 ∈ {0, 1}N ×N ,

Yij = φ(Mij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1.

Lack of interference: Both exhibit strong local dependence on M.

Does lack of interference hold in general? No.

What properties must M satisfy to get this representation?

Harry Crane Symmetry and Networks Midwest Probability Colloquium 30 / 58



Notation

General setting:

signature: L = {i1, . . . , ir} with 1 ≤ i1 ≤ · · · ≤ ir .

L-structure: M = (M1, . . . ,Mr ) with each Mj a symmetric ij -ary relation
Mj ⊆ N ij .

adjacency array: M = (M1, . . . ,Mr ) corresponds to a collection of {0, 1}-valued
arrays Mj = (Mj

s, s ∈ N ij ) with

Mj
s = 1 ⇐⇒ s ∈Mj .

Example:

L = {1, 2}: Graph with colored vertices
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Relative exchangeability

population structure: M = (M1, . . . ,Mr ) with each Mj = (Mj
s, s ∈ N ij ) for ij ≥ 1.

random structure: Y = (Yij )i,j≥1.

Definition
Y is relatively exchangeable with respect to M if Y |σS =D Y |S for all permutations
σ : S → S such that M|σS = M|S .
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General representation

Theorem (C.-Towsner, 2018)

Let Y = (Yij )i,j≥1 be relatively exchangeable with respect to M = (M1, . . . ,Mr ). Then
there exists φ such that Y =D Y∗ with

Yij = φ(M|{i,j},U∅,U{i},U{j},U{i,j}), (i, j) ∈ N, (1)

for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1] and M|S := (M1|S , . . . ,Mr |S).

Representation in (3) holds only under strong condition on M:
ultrahomogeneous: every embedding N→M extends to a automorphism of M.
n-disjoint amalgamation (n-DAP): Let K (set of finite structures) be closed under
isomorphism. For every (Si )1≤i≤n satisfying

Si ∈ K ,
|Si | = [n] \ {i},
and Si |[n]\{i,j} = Sj |[n]\{i,j} for all 1 ≤ i, j ≤ n,

there exists S ∈ K with |S| = n such that S|[n]\{i} = Si for all 1 ≤ i ≤ n.

3-DAP (sets): Si ∈ {{1, 3}, {1, 2}, {2, 3}} extends to {1, 2, 3}.
3-DAP fails (partitions): Si ∈ {1/3, 12, 2/3} cannot be extended to a partition of
[3].
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Relational/Edge exchangeability
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Species sampling

Sample animals and record their species

bear︸︷︷︸
X1

, deer︸︷︷︸
X2

, bear︸︷︷︸
X3

, wolf︸︷︷︸
X4

, . . .

Element-labeled sequence: X1,X2,X3,X4, . . .

Relationally-labeled structure: ∼X≡ {1, 3}, {2}, {4}, . . .

Invariance:
(X1,X2, . . .) =D(Xσ(1),Xσ(2), . . .): observed species representative of all species.

∼Xσ =D ∼X : relation among observed species is representative of the relation of
all species.
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Kingman’s paintbox representation

Partition of [n]: π = B1/B2/ · · · /Bk with nonempty, disjoint subsets such that⋃k
j=1 Bj = [n] = {1, . . . , n}.

Take a partition of [0, 1] and generate Π randomly by taking U1,U2, . . . i.i.d.
Uniform[0, 1]:

Define Π(X) ≡∼X by

i ∼X j ⇐⇒ Ui and Uj in same sub-interval.

Theorem
Π(X) from the paintbox process is an exchangeable random partition of N.

Harry Crane Symmetry and Networks Midwest Probability Colloquium 39 / 58



Kingman’s paintbox representation

Partition of [n]: B1/B2/ · · · /Bk with nonempty, disjoint subsets such that
⋃k

j=1 Bj = [n].

Theorem (Kingman, 1978)
Let Π be an exchangeable partition of N. Then there exists a unique probability
measure φ on

F↓N = {(f0, f1, . . .) :
∑
i≥0

fi = 1 and f1 ≥ f2 ≥ · · · ≥ 0}

so that Π can be generated by εφ(·) =
∫
F↓N

εf (·)φ(df ):

f ∼ φ,

X1,X2, . . . conditionally i.i.d. from P(Xi = j | f ) = fj , j ≥ 0.

Let Π be partition induced by (X1,X2, . . .).

Example: (X1,X2, . . .) = (3, 0, 1, 0, 1, 1) =⇒ Π = {1}/{2}/{3, 5, 6}/{4}
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Interaction sampling

Sample phone calls (interactions) from database:

a→ b︸ ︷︷ ︸
X1

, c → a︸ ︷︷ ︸
X2

, d → e︸ ︷︷ ︸
X3

, a→ c︸ ︷︷ ︸
X4

, · · ·

Represent X1,X2, . . . (sequence of edges) by

(X1,X2, . . .) =D(Xσ(1),Xσ(2), . . .) implies equal probability for
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Edge-labeled structure

Call sequence:

Phone call network: treats only structure induced by observed calls. (Vertices
identified only through their edge relations to one another.)

Formally,
EX = {X′ | ∃ρ : {a, b, . . .} → {a, b, . . .} s.t. ρ(X′) = X},

where ρ(X′) = (ρ(X1), ρ(X2), . . .).
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Edge exchangeability

Formally, edge-labeled graph induced by x = (xi )i≥1:

Ex = {x′ | ∃ρ : {a, b, . . .} → {a, b, . . .} s.t. ρ(x′) = x},

where ρ(x′) = ((ρ(x ′11), ρ(x ′12)), (ρ(x ′21), ρ(x ′22)), . . .).

Define the relabeling of y = Ex by σ : N → N by

yσ = {x′ | ∃ρ : {a, b, . . .} → {a, b, . . .} s.t. ρ(x′) = xσ}.

Definition (Edge exchangability)
Y is edge exchangeable if Yσ =D Y for all permutations σ : N → N.

Edge exchangeable =⇒ assign equal probability to
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Edge exchangeability: structural implications

Theorem (Representation theorem)

Let Y be an infinite edge exchangeable random graph then

Y ∼ εφ =

∫
F↓N × N

εf (·)φ(df )

for measure φ on

F↓N ×N :=

(f(i,j))i,j≥−1 : f(i,j) ≥ 0,
∑

i,j≥−1

f(i,j) = 1,
∑
j≥0

f(i,j) ≥
∑
j≥0

f(i+1,j), i ≥ 1


1 Draw f ∼ φ,
2 Given f , draw edges i.i.d. P{Xk = (i, j) | f} = f(i,j).

Edge types:

isolated interactions: f(i,j) for i, j ≥ 0

one-off interaction: f(i,j) for i ≤ 0 and j ≥ 1 or i ≥ 1 and j ≤ 0.

recurring interactions: f(i,j) for i, j ≥ 1.
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Edge exchangeability: Illustration

Theorem (Representation theorem)

Let Y be an infinite edge exchangeable random graph. Then there exists a unique
probability measure φ on F↓N ×N such that Y ∼ εφ, where

εφ(·) =

∫
F↓N × N

εf (·)φ(df ).

Generate Y by first sampling f ∼ φ and, given f = (f(i,j))i,j≥−1, putting
Y = Y(X1,X2, . . .) for X1,X2, . . . i.i.d. from

P{Xk = (i, j) | f} = f(i,j), i, j ≥ −1.

For example: X1 = (2, 4), X2 = (1, 2), X3 = (1, 5), X4 = (6, 9), X5 = (2, 6),
X6 = (2, 6), generates
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Edge exchangeability: Open Problem

Theorem (Representation theorem)

Let Y be an infinite edge exchangeable random graph. Then there exists a unique
probability measure φ on F↓N ×N such that Y ∼ εφ, where

εφ(·) =

∫
F↓N × N

εf (·)φ(df ).

Open Problem
Prove anything about edge exchangeability that’s not already in

H. Crane and W. Dempsey. (2018). Edge exchangeable models for interaction
networks. Journal of the American Statistical Association.

H. Crane and W. Dempsey. (2019). Relational exchangeability. Journal of Applied
Probability.

S. Janson. (2017). On edge exchangeable graphs. arXiv:1702.06396.
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Hollywood model (C.–Dempsey, 2018)

Generate a sequence of edges (Ei )i≥1 as follows.
Label elements in order of appearance.
D(j): degree of vertex labeled j .
Choose elements in edge i , denoted Ei (1) and Ei (2), by

pr(Ei (r) = j | past) ∝
{

D(j)− α, j = 1, . . . ,Ni

θ + αNi , j = Ni + 1.

Any realization of n interactions Yn = E occurs with probability

αv(E) (θ/α)↑v(E)

θ↑mn(E)

∞∏
k=2

exp{Nk (E) log((1− α)↑(k−1))},

where
v(E) is the number of nonisolated vertices in E ,
(Nk (E))k≥0 gives the number of vertices with degree k for each k ≥ 0,
Mk (E) is the number of k -ary edges in E ,
mn(E) =

∑
k≥1 kMk (E) is the total degree of E , and

x↑j = x(x + 1) · · · (x + j − 1) is the ascending factorial function.
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Hollywood model: Basic facts

(Yn)n≥1 obeys Hollywood process with parameter (α, θ) for 0 < α < 1 and θ > −α.
For each n ≥ 1,

pn(k) = Nk (Yn)/v(Yn), k ≥ 1
is the empirical degree distribution of Yn, where Nk (Yn) is the number of vertices
with degree k ≥ 1 and v(Yn) is the number of vertices in Yn, respectively.

Theorem (Power law (C–D, 2018))

For every k ≥ 1,
pn(k) ∼ αk−(α+1)/Γ(1− α) a.s. as n→∞,

that is, Y exhibits power law degree distribution with exponent γ = α + 1 ∈ (1, 2).

Theorem (Sparsity (C–D, 2018))

The expected number of vertices in Yn satisfies

E(v(Yn)) ∼ Γ(θ + 1)

αΓ(θ + α)
(µn)α as n→∞, (2)

where µ =
∑

k≥1 kνk is the mean edge arity. Furthermore, if 1/µ < α < 1, then
(Yn)n≥1 is sparse almost surely.
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Hollywood model: Open Problem

(Yn)n≥1 obeys Hollywood process with parameter (α, θ) for 0 < α < 1 and θ > −α.

For each n ≥ 1,
pn(k) = Nk (Yn)/v(Yn), k ≥ 1

is the empirical degree distribution of Yn, where Nk (Yn) is the number of vertices
with degree k ≥ 1 and v(Yn) is the number of vertices in Yn, respectively.

Open Problem
Analyze other properties of graphs (Yn)n≥1 generated from Hollywood(α, θ) process,
e.g.,

distribution of triangles,

distribution of component sizes,

distribution/behavior of any other network statistics.
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More general forms
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Example: Path sampling

Sample paths between IP addresses:

a→ b → e→ f︸ ︷︷ ︸
X1

, a→ d︸ ︷︷ ︸
X2

, a→ b → c︸ ︷︷ ︸
X3

, a→ g → h︸ ︷︷ ︸
X4

, · · ·

Induced network: Relational structure observed by sampling paths representative
of paths sampled by traceroute.
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Example: Path sampling

Sample paths between IP addresses:

a→ b → e→ f︸ ︷︷ ︸
X1

, a→ d︸ ︷︷ ︸
X2

, a→ b → c︸ ︷︷ ︸
X3

, a→ g → h︸ ︷︷ ︸
X4

, · · ·

Induced network: Relational structure observed by sampling paths representative
of paths sampled by traceroute.

path exchangeability: assign equal probability to
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Relational Exchangeability

Let

R be a set of relations on a finite set (singleton sets, edge, hyperedges, paths,
graphs, etc.) and

F↓R be the “ranked simplex” indexed by the elements of R.

R-structure: structure obtained by removing element labels (taking equivalence class)
of sequence from R. (Gluing edge, paths, etc. together.)

Theorem (C.-Dempsey, 2019)
Let Y be an infinite relationally exchangeable R-structure. Then there exists a unique
probability measure φ on F↓R such that Y ∼ εφ, where

εφ(·) =

∫
F↓R

εf (·)φ(df ).

H. Crane and W. Dempsey. (2019). Relational exchangeability. Journal of Applied
Probability.
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Summary

Theorem (Aldous–Hoover, C.-Towsner)

Let X = (X 1, . . . ,X r ′ ) be relatively exchangeable with respect to M = (M1, . . . ,Mr ). Then there
exists g = (g1, . . . , gr ′ ) such that X =D X∗ with

X∗js = gj (M|{s1,...,si′j
}, (Ut )t⊆{s1,...,si′j

}), s = (s1, . . . , si′j
) ∈ N i′j , (3)

for (Ut )t⊆N:|t|≤max i′j
i.i.d. Uniform[0, 1] and M|S := (M1|S , . . . ,Mr |S).

Aldous–Hoover: M = ∅ or any perfectly symmetric structure (Aut(M) = Sym(N)).
Stochastic blockmodel: M ∈ [k ]N (labeled classes) or M ∈ PN (unlabeled).

Theorem (Kingman, C.-Dempsey)
Let Y be an infinite relationally exchangeable R-structure. Then there exists a unique probability
measure φ on F↓R such that Y ∼ εφ, where

εφ(·) =
∫
F↓R

εf (·)φ(df ).

Special cases:
Kingman: Paintbox process (random equivalence relations).
C.-Dempsey: Edge exchangeability (random interaction networks).
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* More information available at www.harrycrane.com/networks.html
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