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0. Introduction

If you had asked a probabilist in 1970 what was known about
exchangeability, you would 1ikely have received the answer "There's de Finetti's
theorem: what else is there to say?" The purpose of these notes is to dispel
this (still prevalent) attitude by presenting, in Parts II-IV, a variety

of mostly post-1970 results relating to exchangeability. The selection of

From Aldous (1983). Exchangeability and Related Topics.

Also: O. Kallenberg. (20086). Probabilistic Symmetries and Invariance Principles.

Today: Mostly post-2015 results relating to exchangeability.
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@ Lecture 1: Basic symmetries and network sampling.

o H. Crane. (2018). Probabilistic Foundations of Statistical Network Analysis.

e H. Crane and W. Dempsey. (2018). Edge exchangeable models for interaction
networks. Journal of the American Statistical Association.

@ H. Crane and W. Dempsey. (2019). Relational exchangeability. Journal of Applied
Probability.

@ H. Crane and H. Towsner. (2018). Relatively exchangeable structures. Journal of
Symbolic Logic.

@ Lecture 2: Dynamic network models.

@ H. Crane. (2015). Time-varying network models. Bernoulli, 21(3):1670—1696.

@ H. Crane. (2016). Dynamic random networks and their graph limits. Annals of Applied
Probability.

@ H. Crane. (2017). Exchangeable graph-valued Feller processes. Probability Theory
and Related Fields.

e H. Crane. (2018). Combinatorial Lévy processes. Annals of Applied Probability.

e H. Crane and H. Towsner. (2019+). The structure of combinatorial Markov processes.

Probabilistic
Foundations

Book website: http://www.harrycrane.com/networks.html
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Notation and Terminology

@ Network: Abstract, non-mathematical concept. A structure of interconnected
and/or interacting entities.
@ Graph: a pair (V, E) consisting of sets V (vertices) and E C V x V (vertices).

e Encoded as {0, 1}-valued adjacency array y = (¥j); jev With

_ /1, (i) €E,
Vi = 0, otherwise.

o Edge-labeled graph: Equivalence class of structures formed out of edge
sequences (formal definition later).

e
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Variations of exchangeability

@ Exchangeability (conventional): X =p X7 = (X,)»(j))i,j>1 for all permutations
oc:N—N.

@ Relative exchangeability: M represents heterogeneity of a population and X is
exchangeable relative to the symmetries of M.

SN SN

6 m—

AN

© Relational exchangeability: Exchangeability with respect to relabeling relations

(species, edges, paths, networks, etc.)
. .
Z
A A
I I

[ ]
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Exchangeable random graphs
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Vertex relabeling

@ Data: Y = (Yj)ijev € {0,1}*".
@ Symmetries: Any permutation o : V — V determines a relabeling map

y—y’ = (yU(i)o(j))iJE v

Graph on the right obtained by relabeling graph on left with
0'(1) = 4, 0'(2) = 2, 0'(3) = 1, a'(4) = 7, 0'(5) — 3, 0-(6) — 5, 0—(7) = 6.
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(Vertex) exchangeability

Definition ((Vertex) exchangeability)
A random graph Y = (Yj)ijev is (vertex) exchangeable if

Y°=pY forall permutationso : V — V.
Equivalently,
P(Y € A°) =P(Y € A) for all permutations o : V — V,

where A° = {y? : y € A} obtained by relabeling all elements of A according to o.

@ A vertex exchangeable distribution assigns equal probability to isomorphic graphs.
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de Finetti’s theorem

A sequence X = (Xi, Xo,...) is exchangeable if

X7 = (X5(1y, Xo2), - - -)=p X for all permutations o : N — N.

Theorem (de Finetti)

LetX = (X1, Xz, .. .) be a countable, exchangeable {0, 1}-valued sequence. Then

there exists a unique probability measure . on [0, 1] such that the finite-dimensional
distributions of X are given by

Pr((Xi,..., Xn) = (X1,..., X)) = /0 p=i%i(1 — p)"~Ei% u(dp).

@ Intuition:

e Pick a coin with a random heads-probability (according to ).
o Toss the coin repeatedly to generate X.

@ An exchangeable sequence is a mixture of i.i.d. sequences.

@ Analogous theorem holds for countably exchangeable sequences in any nice
enough probability space.
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de Finetti’s theorem

A sequence X = (Xi, Xo,...) is exchangeable if

X7 = (X5(1y, Xo2), - - -)=p X for all permutations o : N — N.

Theorem (de Finetti)

LetX = (X1, Xz, .. .) be a countable, exchangeable {0, 1}-valued sequence. Then

there exists a unique probability measure . on [0, 1] such that the finite-dimensional
distributions of X are given by

;
Pr((Xi, ..., Xn) = (X1, -, Xn)) :/0 P> (1 — p)"~ %1% u(dp).

@ Intuition:

e Pick a coin with a random heads-probability (according to ).
@ Toss the coin repeatedly to generate X.

@ An exchangeable sequence is a mixture of i.i.d. sequences.

@ Analogous theorem holds for countably exchangeable sequences in any nice
enough probability space.
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de Finetti’s theorem: alternative representation

Theorem (de Finetti)

LetX = (X1, X2, . ..) be an exchangeable {0, 1}-valued sequence. Then there exists a
measurable function ¢ : [0,1] x [0,1] — {0,1} such that X =p X* = (X7, X5, ...),
where

)(j* :¢(U07U{]})7 ./Z 17
for Uy, (Uyiy)i>1 i.i.d. Uniform(0, 1].

@ Pick a coin with a random heads-probability (according to ).
@ Toss the coin repeatedly to generate X.

@ Shared dependence on U, is the only source of dependence among variables.
@ Fix Uy = a, then X" = ¢(a, Uyyy) is i.id.

Exchangeable sequence is conditionally i.i.d.
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Exchangeable random graphs

Arandom array Y = (Y )i ;>1 is exchangeable if

Y7 = (Yoa)o())ij=1 =p Y forall permutations o : N — N.

Theorem (Aldous—Hoover—Kallenberg)

LetY be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function ¢ : [0,1]* — {0,1} such that
Y =pY" = (Y} )ijen, where

Yi = ¢(Us, Uiy, Uy, Upip), 1,J > 1,

for U@, (U{i})iZh (U{,'7j})j2,'21 iid. Uniform[O, 1].

Decomposes structure of exchangeable random graph:
@ Global effect: Uy
@ Vertex effects: Uyjy, Ugy
@ Edge effects: Uy;
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Exchangeable random graphs

Arandom array Y = (Y )i ;>1 is exchangeable if

Y7 = (Yoa)o())ij=1 =p Y forall permutations o : N — N.

Theorem (Aldous—Hoover—Kallenberg)

LetY be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function ¢ : [0,1]* — {0,1} such that
Y =pY" = (Y} )ijen, where

Yi = ¢(Un, Uiy, Uy, Upip), 1,4 2 1,

for U@, (U{i})iZh (U{,'7j})j2,'21 iid. Uniform[O, 1].

Decomposes structure of exchangeable random graph:
@ Global effect: Uy (shared by all edges)
@ Vertex effects: Uyjy, Ugy
@ Edge effects: Uy;
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Exchangeable random graphs

Arandom array Y = (Y )i ;>1 is exchangeable if

Y7 = (Yoa)o())ij=1 =p Y forall permutations o : N — N.

Theorem (Aldous—Hoover—Kallenberg)

LetY be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function ¢ : [0,1]* — {0,1} such that
Y =pY" = (Y} )ijen, where

Yi =o(Us, Uiy, Uiy, Ugipy), 021,

for U@, (U{i})iZh (U{,'7j})j2,'21 iid. Uniform[O, 1].

Decomposes structure of exchangeable random graph:
@ Global effect: Uy
@ Vertex effects: Uy;y, Uy (shared by all edges involving given vertex)
@ Edge effects: Uy;
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Exchangeable random graphs

Arandom array Y = (Y )i ;>1 is exchangeable if

Y7 = (Yoa)o())ij=1 =p Y forall permutations o : N — N.

Theorem (Aldous—Hoover—Kallenberg)

LetY be the adjacency array of an exchangeable random graph with vertex set N.
Then there exists a measurable function ¢ : [0,1]* — {0,1} such that
Y =pY" = (Y} )ijen, where

Yi = ¢(Us, Uiy, Uy, Upip), 1,J 21,

for U@, (U{i})iZh (U{,'7j})j2,'21 iid. Uniform[O, 1].

Decomposes structure of exchangeable random graph:
@ Global effect: Uy
@ Vertex effects: Uyjy, Ugy
@ Edge effects: Uy; j; (only for edge between i and j)
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Dissociated random graphs

Definition (Dissociated array)
A random array Y = (Yj)ij>1 is dissociated if

Y |s and Y |r are independent for all S, T C N such thatSN T = (.

Fix Uy = « in Aldous—Hoover: for SN T = {:
oY |S = ((j)(a, U{,‘}, U{,‘}, U{,‘J})),"jzs depends on U{,‘}, U{j}, U{,’J} indexed by S.
oY |T = (¢(a, U{,‘}, U{/’}, U{i,j}))fJZT depends on U{,‘}, U{j}, U{,‘J} indexed by T.

Every exchangeable random graph is a mixture of dissociated, exchangeable

graphs.
Example:
@ Erdés—Rényi model: all edges are i.i.d. (¢ depends only on last argument.)
@ Graphon models: let g : [0,1] x [0,1] — [0, 1], let Uy, Us, . .. i.i.d. Uniform[0, 1] and
let

P(Yj=1|U,U)=9U,U), ij>1.
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Graph limits

Let G = (Gj)i jen be a countable graph and F = (Fj)1<i,j<m be a graph with vertex set
[m={1,...,m}
@ For each n > 1, define

1
injections v:[m]—[n]
@ The homomorphism density of F in G is the limit

t(F,G) = lim t,(F,G) if the limit exists.

@ G possesses a graph limit if {(F, G) exists for all finite F, for all m > 1.

Graph limits <— exchangeable, dissociated probability measures on countable graphs. \

Immediate implications:
(i) Dense structure: Exchangeable random graph = dense or empty w.p. 1.

(i) Representative sampling: normalizing constant 1/n*™ interpreted as assigning
equal probability (uniform distribution) on all x)-sampling maps.
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Graph limits

Let G = (Gy)ijen be a countable graph and F = (Fj)1<ij<m be a graph with vertex set
[m={1,...,m}
@ Foreach n > 1, define

tn(F,G) = # > 1(GY = F).

injections 1:[m]—[n]
@ The homomorphism density of F in G is the limit

t(F,G) = nlim ta(F, G) if the limit exists.

@ G possesses a graph limit if {(F, G) exists for all finite F, for all m > 1.

Graph limits < exchangeable, dissociated probability measures on countable graphs.

Open Problem

Define and study an interesting notion of asymptotics for sparse/complex networks.
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Relative exchangeability
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Relative symmetries

Definition (Relative exchangeability)

Invariance with respect to the symmetries of another structure.

Population N = {1,2, ...} divides into two classes, e.g., male and female.
@ Define C = (C1,Cs,...) by

C — 1, iis male,
"7 1 0, otherwise.

@ (X1, Xz,...) is relatively exchangeable with respect to C, i.e., X7 =p X for
permutations o : N — N that fix C.
C |1 1 0 1 0 ©0 1
X X1 Xg X3 X4 X5 X6 X7
XX Xa X5 X5 X5 X5 X

X=pX
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Relatively exchangeable sequences

Definition (Relative exchangeability)

Invariance with respect to the symmetries of another structure.

Population N = {1,2, ...} divides into two classes, e.g., male and female.
@ Define C = (Cy, Cs,...) by

C — 1, iis male,
"7 1 0, otherwise.

@ Measurements (Xi, Xz,...) are relatively exchangeable with respect to C, i.e.,
X7 =p X for permutations ¢ : N — N that fix C.

Theorem

Let C = (Cy, Cs, .. .) be [k]-valued sequence™ and X = (X1, Xz, .. .) be relatively
exchangeable with respect to C. Then there exists a measurable
¢ : [K] x [0,1]% — {0,1} such that X =p X* = (X} )i>1 with

X' =¢(Ci, Uy, Uy), i>1,

for Uy and(U{,'}),-21 iid. Uniform[O, 1]

v
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Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, forall S C N, Y |g=p Y |s for all
automorphisms o of G|s.

O]

G Y

o‘° d © o © & ©
(@) {b)
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Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, forall S C N, Y |g=p Y |s for all
automorphisms o of G|s.

v

Theorem (C. 2017)

Let G = (N, E) be an undirected graph*and Y be relatively exchangeable with respect
to G. There exists ¢ : {0,1} x [0,1]* — {0,1} such thatY =p Y* = (Y;)i =1 with

Yi = 8(Gj, Up, Ugiy, Uy, Ugiy), 1,5 > 1
where

0, otherwise.

@ relatively exchangeable (structural) component
@ exchangeable (Aldous—Hoover) component
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Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, forall S C N, Y |g=p Y |s for all
automorphisms o of G|s.

v

Theorem (C. 2017)

Let G = (N, E) be an undirected graph*and Y be relatively exchangeable with respect
to G. There exists ¢ : {0,1} x [0,1]* — {0,1} such thatY =p Y* = (Y7 )ij>1 with

Yi = 8(Gj, Up, Ugy, Uy, Ugiy), 1,5 > 1

where o
G"_ 17 (’7/)€E7
Y71 0, otherwise.

@ relatively exchangeable (structural) component
@ exchangeable (Aldous—Hoover) component
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Relatively exchangeable random graphs

Definition (Relatively exchangeable random graph)

Y is relatively exchangeable with respect to G if, forall S C N, Y |g=p Y |s for all
automorphisms o of G|s.

v

Theorem (C. 2017)

Let G = (N, E) be an undirected graph*and Y be relatively exchangeable with respect
to G. There exists ¢ : {0,1} x [0,1]* — {0,1} such thatY =p Y* = (Y7 )ij>1 with

Yi = 8(Gi, Up, Upiy, Uy, Ugiy), 05 > 1

where o
G"_ 17 (’7/)€E7
Y71 0, otherwise.

@ relatively exchangeable (structural) component
@ exchangeable (Aldous—Hoover) component
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General case

<M: general combinatorial structure

Y is M-exchangeable (exchangeable relative to 91):
Sequence: M = (My, Mz, ...) € {0,1}V,
Y’:¢(MI7U@7U{I})7 IZ 1.

Graph: M = (M;);j>1 € {0, 1} <N

Yi = &My, Up, Uiy, Uy, Ugijp), 0,5 > 1.

Lack of interference: Both exhibit strong local dependence on 9. J

@ Does this lack of interference hold in general? No.
@ What properties must 9t satisfy to get the representation?
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General case

<M: general combinatorial structure

Y is M-exchangeable (exchangeable relative to 91):
Sequence: M = (My, Mz, ...) € {0,1}V,
Yi:¢(Mi7U07U{i})7 121

Graph: M = (M;);j>1 € {0, 1} <N

Yi = ¢(My, Up, Uiy, Uy, Ugijy), 0,5 > 1.

Lack of interference: Both exhibit strong local dependence on 9. J

@ Does lack of interference hold in general? No.
@ What properties must 9t satisfy to get this representation?
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General setting:
@ signature: £ = {i1,..., i} with1 <ij <. <.
@ L-structure: M = (M',...,9M") with each M a symmetric j-ary relation
o C N,
@ adjacency array: Mt = (93?1, ..., ") corresponds to a collection of {0, 1}-valued
arrays M = (M}, s € NY) with
M. =1 = seW.
Example:
@ £ = {1,2}: Graph with colored vertices

{135} {2,467}
3

1N
LA

E)
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General setting:
@ signature: £ = {i1,..., i} with1 <ij <. <.
@ L-structure: M = (M',...,9M") with each M a symmetric ji-ary relation
o C N,
@ adjacency array: Mt = (EDI‘, ..., 9" corresponds to a collection of {0, 1}-valued
arrays M = (M}, s € NY) with
M. =1 = sew.
Example:
@ £ = {1,2}: Graph with colored vertices

2

AN
VN
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Relative exchangeability

@ population structure: M = (M, ..., M") with each 9 = (M, s € N¥) for j; > 1.
@ random structure: Y = (Yj)ij>1.

Definition

Y is relatively exchangeable with respect to M ifY |2 =1 Y |s for all permutations

o : S — S such that M|z = M|s.

{135} {2,467}

Harry Crane
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Relative exchangeability

@ population structure: M = (M, ..., M") with each 9 = (M, s € N¥) for j; > 1.
@ random structure: Y = (Yj)ij>1.

Definition

Y is relatively exchangeable with respect to M ifY |2 =1 Y |s for all permutations
o : S — S such that M|z = M|s.

1

|~

2\
6 m———

A\
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Relative exchangeability

@ population structure: M = (M, ..., M") with each 9 = (M, s € N¥) for j; > 1.
@ random structure: Y = (Yj)ij>1.

Definition

Y is relatively exchangeable with respect to M ifY |2 =1 Y |s for all permutations
o : S — S such that M|z = M|s.

1

|~

N\

6 m————

Harry Crane
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General representation

Theorem (C.-Towsner, 2018)

LetY = (Yj)ij>1 be relatively exchangeable with respect to Mt = (M', ..., 9M"). Then
there exists ¢ such thatY =p Y™ with

Yi = ¢(Mgijy, Uo, Ugiy, Ugy, Ugip), - (L)) €N, (1)

for U@, (U{,’}),‘zh (U{,’J} )12121 iid. Uniform[O, 1] and mls = (DJT‘ |s, R ,DJT’\S).

Representation in (3) holds only under strong condition on 93t:

@ ultrahomogeneous: every embedding 9t — 99t extends to a automorphism of M1.

@ n-disjoint amalgamation (n-DAP): Let K (set of finite structures) be closed under
isomorphism. For every (6)1<i< satisfying
e 5 €K,
o |6 =[]\ {i},
e and Gil[n]\{i,j} = Gjl[n]\{i,j} forall 1 < I,] <n,
there exists 6 € K with |G| = n such that S|\, = S;forall1 <i < n.

@ 3-DAP (sets): G; € {{1,3},{1,2},{2,3}} extends to {1,2,3}.
@ 3-DAP fails (partitions): &; € {1/3,12,2/3} cannot be extended to a partition of
(3]-
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Relational/Edge exchangeability

Harry Crane Symmetry and Networks Midwest Probability Colloquium 37/58



Species sampling

Sample animals and record their species

bear, deer, bear, wolf,
N—— N~ N——~ ~—~

X Xo X3 X

@ Element-labeled sequence: Xi, X2, X3, Xa, . . .

13 2 4
o

bear deer wolf

@ Relationally-labeled structure: ~x= {1,3}, {2}, {4}, ...
1 3 2 4
o o o
Invariance:
@ (Xi,Xz,...)=p(X,1); Xo(2), - - -): Observed species representative of all species.

1.3 2 4 1 24 3
L] [ ] L] ] L] [ ]

bear  deer  wolf deer  bear  wolf

@ ~xo =p ~x: relation among observed species is representative of the relation of
all species.

1.3

o
ow

2 a
L] L]
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Kingman’s paintbox representation

@ Partition of [n]: 7 = By/B>/ - - - / Bx with nonempty, disjoint subsets such that
UL B=In={1.....n.

@ Take a partition of [0, 1] and generate M randomly by taking Us, U, . . . i.i.d.
Uniform(0, 1]:

Us Us Us U U Us
I L]

{1}/421/43,5,6}/{"}
@ Define N(X) =~x by

i~xj <= U and U, insame sub-interval.

M(X) from the paintbox process is an exchangeable random partition of N.
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Kingman’s paintbox representation

Partition of [n]: B;/Bx/ - - - / Bx with nonempty, disjoint subsets such that U,l-(:1 B = [n].

Us Us Us U U Uy

[ 1] iy

{11/(2)/43,5,61/8}

Theorem (Kingman, 1978)

Let N be an exchangeable partition of N. Then there exists a unique probability
measure ¢ on

Fi=A{(fofr,...):> fi=1andfy > f > >0}
i>0
so that T can be generated by e, (-) = fﬂ# er(-)p(df):

° fN ¢:
@ Xi,Xo,... conditionally i.i.d. from P(X; =j | f) =f;, j > 0.
@ Let T be partition induced by (X1, Xz, . ..).

Example: (Xi, Xz,...) =(3,0,1,0,1,1) = N ={1}/{2}/{83,5,6}/{4}
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Interaction sampling

@ Sample phone calls (interactions) from database:

a—b c—a d—e a—c,
N—— N——" N—— N——
X Xo X3 Xy

@ Represent Xi, Xz, ... (sequence of edges) by

1 2
4
3

—e

@ (Xi,Xz,...)=p(Xy(1); X5(2), - - -) implies equal probability for

1 2 4 1
4 3
3 2
—® —e
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Edge-labeled structure

@ Call sequence:

1 2
a

@ Phone call network: treats only structure induced by observed calls. (Vertices
identified only through their edge relations to one another.)

1 2
. 4
.—».z \
1 2 1 2
4 ™ N

.3 .3

e

& ={X'|3p:{ab,..}—>{ab, . . }st pX) =X}
where p(X’) = (p(X1), p(Xz), - - .).
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Edge exchangeability

@ Formally, edge-labeled graph induced by x = (x;)i>1:
& ={x"|3p:{ab,...} = {ab,...}st p(x')=x},

where p(x") = ((p(x11), p(Xi2)), (p(X21), p(X22)), - - -)-
@ Define the relabeling ofy = & by o : N — N by

y’={x"|3p:{ab,...} = {ab,...} st p(x') =x}.

Definition (Edge exchangability)

Y is edge exchangeable if Y’ =p Y for all permutations o : N — N.

@ Edge exchangeable —> assign equal probability to

1 2 4 1
4 o 3
3 2
*—0 *—0
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Edge exchangeability: structural implications

Theorem (Representation theorem)

LetY be an infinite edge exchangeable random graph then

Yoo [ atolan

N X N

for measure ¢ on

TN xn = {(f(f,f))i,fz1 ip >0, D fap =1, fun =D i,

ij=—1 j=0 j>0

,21}

© Draw f ~ ¢,
@ Given f, draw edges i.i.d. P{Xk = (i,)) | f} = £ ).
Edge types:
@ isolated interactions: f; ; for i,j > 0
@ one-off interaction: f; , fori<0andj>1ori>1and;<0.
@ recurring interactions: f; ; for i,j > 1.
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Edge exchangeability: structural implications

Theorem (Representation theorem)

LetY be an infinite edge exchangeable random graph then

Yoeo= [ atyolan

N X N

for measure ¢ on

TN xn = {(f(f,f))i,fz1 ip >0, D fap =1, fun =D i,

ij=—1 j=0 j>0

,21}

Q@ Draw f ~ ¢,
@ Given f, draw edges i.i.d. P{Xk = (i,)) | f} = £ ).
Edge types:
@ isolated interactions: f; ; for i,j > 0
@ one-off interaction: f; , fori<0andj>1ori>1and;<0.
@ recurring interactions: f; ; for i,j > 1.
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Edge exchangeability: structural implications

Theorem (Representation theorem)

LetY be an infinite edge exchangeable random graph then

Yoo [ atlan

N X N

for measure ¢ on

TN xn = {(f(f,f))i,fz1 ip >0, D fap =1, fun =D i,

ij=—1 j=0 j>0

,21}

© Draw f ~ ¢,
@ Given f, draw edges i.i.d. P{Xx = (/.)) | f} = fi ).
Edge types:
@ isolated interactions: f; ; for i,j > 0
@ one-off interaction: f; , fori<0andj>1ori>1and;<0.
@ recurring interactions: f; ; for i,j > 1.
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Edge exchangeability: lllustration

Theorem (Representation theorem)

LetY be an infinite edge exchangeable random graph. Then there exists a unique
probability measure ¢ on Fy ., such thatY ~ e,, where

()= [, al)odn.

N x N

@ Generate Y by first sampling f ~ ¢ and, given f = (f; ;)ij>—1, putting
Y =Y(Xi, Xo,...) for X1, Xz, ... i.i.d. from

P{Xk = (i,)) | f} = Fijy, i,/ >—1.

@ For example: X1 = (2,4), Xo = (1,2), Xs = (1,5), X4 = (6,9), Xs = (2,6),
Xs = (2,6), generates
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Edge exchangeability: Open Problem

Theorem (Representation theorem)

LetY be an infinite edge exchangeable random graph. Then there exists a unique
probability measure ¢ on Fy. .. . such thatY ~ es, where

W)= [, al)odn.

N X N

Open Problem
Prove anything about edge exchangeability that’s not already in

@ H. Crane and W. Dempsey. (2018). Edge exchangeable models for interaction
networks. Journal of the American Statistical Association.

@ H. Crane and W. Dempsey. (2019). Relational exchangeability. Journal of Applied
Probability.

@ S. Janson. (2017). On edge exchangeable graphs. arXiv:1702.06396.
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Hollywood model (C.—Dempsey, 2018)

Generate a sequence of edges (E;);>1 as follows.
@ Label elements in order of appearance.
@ D(j): degree of vertex labeled j.
@ Choose elements in edge /, denoted E;(1) and E;(2), by

N D(j)—a, j=1,...,N;
pr(E,(r)fj|past)o<{ 0+aN, j=N+1.

Any realization of ninteractions Y, = E occurs with probability

v 0/a)TV(E) = B
o <E>% [ ] exp{Nc(E)log((1 — o)" )},
k=2

where
@ V(E) is the number of nonisolated vertices in E,
@ (Nk(E))k>0 gives the number of vertices with degree k for each k > 0,
@ My(E) is the number of k-ary edges in E,
@ my(E) =3 ,~, kMk(E) is the total degree of E, and
@ x = x(x+1)---(x +j— 1) is the ascending factorial function.
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Hollywood model: Basic facts

(Yn)n>1 obeys Hollywood process with parameter («,0) for0 < a < 1 and 8 > —a.
@ Foreachn>1,
pn(k) = Nk(Yn)/V(Yn)a k>1
is the empirical degree distribution of Y ,, where Ni(Y,) is the number of vertices
with degree k > 1 and v(Y,,) is the number of vertices in Y ,, respectively.

Theorem (Power law (C-D, 2018))

Forevery k > 1,

pn(k) ~ ak™ ™ /r(1 —a) as.asn— oo,

that is, Y exhibits power law degree distribution with exponenty = a + 1 € (1,2).

Theorem (Sparsity (C-D, 2018))

The expected number of vertices in Y, satisfies

r@+1)

E(v(Yn)) ~ af(@+a)

(uM)® asn— oo, 2)

where . =", -, kuk is the mean edge arity. Furthermore, if1/pu < o < 1, then
(Yn)n>1 is sparse almost surely.

v
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Hollywood model: Open Problem

(Yn)n>1 obeys Hollywood process with parameter («,6) for0 < a < 1and 6 > —a.

@ Foreachn>1,
pn(k) = Nk(Yr)/v(Y,), k=>1

is the empirical degree distribution of Y ,, where Ni(Y,) is the number of vertices
with degree k > 1 and v(Y,) is the number of vertices in Y ,, respectively.

Open Problem
Analyze other properties of graphs (Y »)n>1 generated from Hollywood(«., 0) process,
eg.,

@ distribution of triangles,

@ distribution of component sizes,
@ distribution/behavior of any other network statistics.
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More general forms

Networks Midwest Probabilit;
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Example: Path sampling

Sample paths between IP addresses:

a—>b—-e—f a—d a—->b—c a—g-—h,
N— — N—— N——_——— R ,

X X2 X3 X,

@ Induced network: Relational structure observed by sampling paths representative
of paths sampled by traceroute.

AN
Fos
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Example: Path sampling

Sample paths between IP addresses:

a—»b—-e—f, a—»d a—b-—c, a—g-—h,
R N—— N ——

———
Xi X2 X3 Xy

@ Induced network: Relational structure observed by sampling paths representative
of paths sampled by traceroute.

Za\"
\T .
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Example: Path sampling

Sample paths between IP addresses:

a—rb—-e—f, a—»d a—b-—c, a—g-—h,
—_——— N—— —— N ,

Xi X2 X3 X,

@ Induced network: Relational structure observed by sampling paths representative
of paths sampled by traceroute.

@ path exchangeability: assign equal probability to

* ]

l ® o ©
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Relational Exchangeability

Let

@ R be a set of relations on a finite set (singleton sets, edge, hyperedges, paths,
graphs, etc.) and

° ]-‘7% be the “ranked simplex” indexed by the elements of R.

‘R-structure: structure obtained by removing element labels (taking equivalence class)
of sequence from R. (Gluing edge, paths, etc. together.)

Theorem (C.-Dempsey, 2019)

Let Y be an infinite relationally exchangeable R -structure. Then there exists a unique
probability measure ¢ on ]—'7% such that Y ~ €4, where

()= [ atyolan.

H. Crane and W. Dempsey. (2019). Relational exchangeability. Journal of Applied
Probability.
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Theorem (Aldous—Hoover, C.-Towsner)

Let X = (X',..., X" ’) be relatively exchangeable with respect to 9t = (9n',...,9M"). Then there
exists g = (91, - - ., 9y ) such that X =p X* with

X = G(Msy.....o, 1 (Uec(sy..sy1): §= (51,0, 8y) €N, (3)
J J

for(Ut)th:mgmaxij’ i.i.d. Uniform[0, 1] and M|s := (Mg, ..., M |s).

@ Aldous—Hoover: 9t = @ or any perfectly symmetric structure (Aut(9t) = Sym(N)).
@ Stochastic blockmodel: 9 € [k]N (labeled classes) or 9t € Py (unlabeled).

Theorem (Kingman, C.-Dempsey)

Let Y be an infinite relationally exchangeable R-structure. Then there exists a unique probability
measure ¢ on .7—‘7% such that Y ~ ey, where

o) = [, erthote).

Special cases:
@ Kingman: Paintbox process (random equivalence relations).
@ C.-Dempsey: Edge exchangeability (random interaction networks).
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* More information available at www.harrycrane.com/networks.html
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