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@ Lecture 1: Basic symmetries and network sampling.
@ H. Crane and W. Dempsey. (2018). Edge exchangeable models for interaction
networks. Journal of the American Statistical Association.
e H. Crane and W. Dempsey. (2019). Relational exchangeability. Journal of Applied
Probability.
e H. Crane and H. Towsner. (2018). Relatively exchangeable structures. Journal of
Symbolic Logic.

@ Lecture 2: Dynamic network models.
o H. Crane. (2018). Probabilistic Foundations of Statistical Network Analysis.
@ H. Crane. (2015). Time-varying network models. Bernoulli, 21(3):1670—1696.
@ H. Crane. (2016). Dynamic random networks and their graph limits. Annals of Applied
Probability.
e H. Crane. (2017). Exchangeable graph-valued Feller processes. Probability Theory
and Related Fields.
H. Crane. (2018). Combinatorial Lévy processes. Annals of Applied Probability.
H. Crane and H. Towsner. (2019+). The structure of combinatorial Markov processes.

Probabilistic
Foundations

Book website: http://www.harrycrane.com/networks.html
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Time-varying network models

@ {0,1}*N: graphs with vertex set N = {1,2,...}.
e {0,1}™": graphs with vertex set [n] := {1,...,n}.
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Basic assumptions:
(Te)e>0 is @ Markov process on {0, 1} N satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy
P{l1e-|Ti=G =P{[{,,e-|T7{ =G}, forallGe {0,1}"*",

@ projective Markov property: (I't|(5) >0 is @ Markov chain on {0, 1}"*", for every
n=1,2,....

v
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Time-varying network models

@ {0,1}*N: graphs with vertex set N = {1,2,...}.
e {0,1}™": graphs with vertex set [n] := {1,...,n}.

TN - N LT
AT LI T

Basic assumptions:
(Te)e>0 is @ Markov process on {0, 1} N satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy
P{l1e-|Ti=G=P{l{,, €| =G}, forallGe {0,1}"*".

@ projective Markov property: (I't|(5) >0 is @ Markov chain on {0, 1}"*", for every
n=1,2,....

v

Harry Crane Dynamic Networks Midwest Probability Colloquium 4/44



Time-varying network models

@ {0,1}*N: graphs with vertex set N = {1,2,...}.
e {0,1}™": graphs with vertex set [n] := {1,...,n}.

SN N SN

AT \/\/\ NN

Basic assumptions:
(Te)e>0 is @ Markov process on {0, 1} N satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy
P{l1e-|Ti=G=P{l{,, €| =G}, forallGe {0,1}"*".

@ projective Markov property: (I't|(5) >0 is @ Markov chain on {0, 1}"*", for every
n=1,2,....

v

Harry Crane Dynamic Networks Midwest Probability Colloquium 5/44



Time-varying network models

@ {0,1}*N: graphs with vertex set N = {1,2,...}.
o {0,1}™": graphs with vertex set [n] := {1,...,n}.
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Basic assumptions:
(Tt)e>o0 is @ Markov process on {0, 1} %" satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy
P{Ty1€-|Ti=G}=P{l%€-|T{ =G}, forallGe {0,1}" V.

@ projective Markov property: (Tt|(,):>o is a Markov chain on {0, 1}"*", for
everyn=1,2,....

v
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Exchangeable, Feller < Exchangeable, projective

The semigroup (P;):c7 of a Markov process I acts on bounded measurable functions
g:{0,1}"*N 5 Rby

P.9(G) :=E(g(l) |To=G), Ge{0,1}" >N,

Definition (Feller property)

We say that I’ possesses the Feller property if for all bounded, continuous
g: {0, 1}V >N 4R,

(iy G+~ P:g(G) is continuous for every t > 0 and
(i) limeyo P:g(G) = g(G) forall G € {0,1} > ¥,

4

Theorem

The following are equivalent for any exchangeable Markov process I on {0, 1} N,
(i) T has the projective Markov property.
(ii) I has the Feller property.

Proof:
(i) = (ii): Compactness + Stone—Weierstrass theorem.
(ii) = (i): Use definition of Feller on test functions v r(G) := 1(G|j; = F}.
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Rewiring operator

A {0,1} x {0,1}-valued array W = (Wj); j>1 defines a map {0, 1} * N — {0, 1}V * ¥,
G — W(G) = (Gj)ij>1 with

G = VVI'](O)7 Gil:o7
=1 W), Gy=1.

< AN

A | 17\ | \\
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Rewiring operator

A {0,1} x {0,1}-valued array W = (Wj); j>1 defines a map {0, 1} * N — {0, 1}V * ¥,
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G = VVI'](O)7 Gil:o7
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Rewiring operator

A {0,1} x {0,1}-valued array W = (Wj); j>1 defines a map {0, 1} * N — {0, 1}V * ¥,

G — W(G) = (Gj)ij>1 with
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Rewiring operator

A {0,1} x {0,1}-valued array W = (Wj); j>1 defines a map {0, 1} * N — {0, 1}V * ¥,
G — W(G) = (Gj)ij>1 with

G = VVI'](O)7 Gil:o7
=1 W), Gy=1.
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Rewiring operator

A {0,1} x {0, 1}-valued array W = (Wj); j>1 defines a map {0, 1} * N — {0, 1} * ¥
G— W(G) = (G,/'j-),'7j21 with
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@ G — W(QG) is Lipschitz continuous.
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Exchangeable rewiring chain

Random W defines a transition probability on {0, 1} X" by
P(G,) :=P{(W: W(G)€-}), Ge{0,1}" ",

Let w be an exchangeable probability measure on rewiring arrays.

For initial state G € {0, 1}" ¥, construct I'g = (Tm)m>0 by
@ taking Wy, Wa, ... i.i.d. w and, given W, Wa, .. ., putting
Q@ Iy=Gand
Q M1 = Wnpt(Fm) for m> 0.

Define the w-rewiring chain with initial distribution v by '“"¥ = I'g, for G chosen
from initial distribution v.
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Exchangeable rewiring chain

Random W defines a transition probability on {0, 1} X" by
P(G,) :=P{(W: W(G)€-}), Ge{0,1}" ",

Let w be an exchangeable probability measure on rewiring arrays.

For initial state G € {0, 1}" ¥, construct I'g = (Tm)m>0 by
@ taking Wy, Wa, ... i.i.d. w and, given W, Wa, .. ., putting
Q@ Iy=Gand
Q M1 = Wnpt(Fm) for m> 0.

Define the w-rewiring chain with initial distribution v by '“"¥ = I'g, for G chosen
from initial distribution v.

Proposition

For v an exchangeable distribution on {0, 1} %~ I js exchangeable and has the
Feller property.

Exercise or see H. Crane. (2015). Time-varying network models. Bernoulli.

Key claim: the converse holds.
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Characterization of graph-valued Markov processes

Let (Tm)m=o,1,... be a discrete-time Markov chain on {0, 1}" *™ (countable graphs)
which is

@ exchangeable: (I'n)m>0 =p('7)m>o for all permutations o : N — N.
@ projective: (I'm|[;)m>0 is a Markov chain for all n > 1.

Theorem (Crane 2017

Then there exists an exchangeable probability measure w on {0,1} x {0, 1}-valued
arrays so that (I'm) =p(I'y,) with Tg =p 'y and for each m > 1

—
~

M= Wn(Tm-1) = (Wno---oW) (), m=>A1,
for Wy, Wa, ... i.i.d. w and G' = W(G) defined by

W), Gj=0
/- i U
GU_{ VV,}, Gj=1.

Proof

Exchangeable and Feller = I+, 4 is relatively exchangeable with respect to I'; for each
t. Use representation for relatively exchangeable graphs to construct w.

O

v
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Recall: Exchangeable random graphs (Aldous, 1979; Hoover, 1981)

I = ([j)ij>1: adjacency array of a random graph with vertex set N.

Definition (Exchangeable random graph)

I is exchangeable if 7 = ([, ()o())ij>1 =p I for all permutations o : N — N.

Theorem (Aldous—Hoover)

There exists a measurable function ¢ : [0,1]* — {0,1} such thatT =p " = (I'});j>1
with

r; = (U, Uiy, Uiy, Ugip), 155> 1,
for Uy, (U{,‘})i21,(U{,‘,/‘})/2,'21 i.id. Uniform[O, 1].

Harry Crane

Dynamic Networks
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Recall: Relative exchangeability (Crane (2017), C.—Towsner (2018))

Definition (Relatively exchangeable random graph)

I' is relatively exchangeable with respect to G if, forall S C N, I'|g =p I'|s for all
automorphisms o of G|s.

SN TN
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Relative exchangeability (Crane (2017), C.—Towsner (2018))

Definition (Relatively exchangeable random graph)

I' is relatively exchangeable with respectto G if, forall S C N, I'|Z =p I'|s for all
automorphisms o of G|s.

2
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Relative exchangeability (Crane (2017), C.—Towsner (2018))

Definition (Relatively exchangeable random graph)

I' is relatively exchangeable with respect to G if, forall S C N, I'|g =p I'|s for all
automorphisms o of G|s.

AN
PN
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Exchangeable + Feller & Relatively exchangeable transition probability

2 2 /2
1<§3 = \ !33 ' ‘:a
T AT K

Basic assumptions:

(Te)e>0 is @ Markov process on {0,1}" N satisfying
@ exchangeability: forallo : N — N, (I'f )i>o0 has same finite-dimensional
distributions as T .
@ projective Markov property: (I't|(5) >0 is @ Markov chain on {0, 1}"*", for every
n=1,2,....

Transition from Gto I':

Observation

Exchangeability and projectivity =—> for all S C N, the conditional distribution of T'|s
given G is invariant under automorphisms of G|s.
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Application of representation theorem

Theorem (Crane (2017))

= (N; E) an undirected graph* and T a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that
M=pl = (I‘;}),-,,-21 with
M = o(Gy, Up, Uiy, Ugy, Ui jy), 1,7 > 1,

for UQ), (U{,‘}),‘21, (U{/’j})/‘2/21 iid. Uniform[O, 1], where

6.1 (N)eE
Y71 0, otherwise.
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Application of representation theorem

Theorem (Crane (2017))

= (N; E) an undirected graph* and T a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that
M=pl = (I‘;}),-,,-21 with

i = ¢(Gij, Up, Uiy, Uiy, Uiy ), 1721,
for UQ), (U{,‘}),‘21, (U{fyf})/2/21 iid. Uniform[O, 1], where

6.1 (N)eE
Y71 0, otherwise.

Application:
@ Generate a pair of graphs W = (W, W4) (jointly exchangeable) by
Wo(i,j) = ¢(0, &, &y - €1y > Eqijy)  and
Wi (i, ) = ¢(1, €0, E0iy» E4y» iy )-
o W = (W, Wy) defines a random operator {0, 1} XN — {0, 1} *N py
G+— G = W(G) with
G/ _ WO(i7j)7 Glj = 07
I Wi(i,)), Gj=1.
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Application of representation theorem

Theorem (Crane (2017))

= (N; E) an undirected graph* andT a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that

F:D M = (r;;),‘7j21 with F,j = ¢(G,‘j, U@, U{,‘}, U{j}, U{,‘,]‘}) fOI’ I,j 2 1.

Application:
@ Generate a pair of graphs (W, Ws) (jointly exchangeable).
/2 Z - ’
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Application of representation theorem

Theorem (Crane (2017))

= (N; E) an undirected graph* andT a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that
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Application:
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Application of representation theorem

Theorem (Crane (2017))

G = (N; E) an undirected graph* andT a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that

F:D M = (r;;),‘7j21 with F,j = ¢(G,‘j, U@, U{,‘}, U{j}, U{,‘,]‘}) fOI’ I,j 2 1.

Application:
@ Generate a pair of graphs (W, Ws) (jointly exchangeable).
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Application of representation theorem

Theorem (Crane (2017))

G = (N; E) an undirected graph* andT a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that

F:D M = (r;;),‘7j21 with F,j = ¢(G,‘j, U@, U{,‘}, U{j}, U{,‘,]‘}) fOI’ I,j 2 1.

Application:
@ Generate a pair of graphs (W, Ws) (jointly exchangeable).
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Application of representation theorem

Theorem (Crane (2017))

G = (N; E) an undirected graph* andT a random graph relatively exchangeable with
respect to G. Then there exists ¢ : {0,1} x [0,1]* — {0, 1} such that

F:D M = (r;;),‘7j21 with F,j = ¢(G,‘j, U@, U{,‘}, U{j}, U{,‘,]‘}) fOI’ I,j 2 1.

Application:
@ Generate a pair of graphs (W, Ws) (jointly exchangeable).
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Sketch of proof

LetT = (T(t)):=0,1,... be exchangeable and have the projective Markov property.
Draw G from Erdds—Rényi(1/2) and consider P{I'(t + 1) € - | ['(t) = G}.

Given I'(t) = G, T'(t+ 1) is relatively exchangeable with respect to G.

= ¢:{0,1} x [0,1]* = {0, 1} such that

Ci(t+ 1) =p(0(Gj» &, Etiy» Egiy - E¢igy )izt -
Now construct W = (W;);;>1 with W; = (W;(0), W;(1)) by
W;(0) = (0,0, &y, E0y» E4iy)
W;(1) = ¢(1, 0,1y 603 $00)-

Let w be the induced probability law of W.
Forany G’ € {0,1}" % there exists (w.p. 1) ¢, : N — N such that
Gv¥ec =G
@ Given W ~ wand any G’ € {0,1}" *¥, we have
P{W(G)e-} = P{rvec(t+1)ec-|r(t) =G}
P{r¥e.c(t+1) €| r¥eo(t) = G} = P(G, ")

e 6 ¢

by the exchangeability & Feller property.
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Continuous-time processes (Poissonian construction)

@ Let w be an exchangeable o-finite measure on Wy, i.e.,
w({ldN}) =0 and w({W € Wy : W|[2] #* |d[2]}) < o0.
@ Let W := {(t, W)} C (0,00) x ({0,1} x {0,1})" be a Poisson point process with
intensity dt ® w.

@ Given W, construct ', = (I'*())1>o with initial state G € {0, 1}" ¥ by putting
(0)=Gandforeachn>1andt >0,

o I — wll(rs™) it t > 0is an atom of W for which W/ # Id, or

o 1 = otherwise.

I, constructed above is exchangeable and Feller. \

Key claim: Converse holds.
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Continuous-time processes

Theorem (Crane 2017)

I = (I't)r>0 an exchangeable, projective Markov process on {0, 1} *N. Then there
exists an exchangeable measure w satisfying

w({ldN}) =0 and w({W € Wk : W|[2] 75 |d[2]}) < 0

such thatT =p I}, as constructed above.

Conditions on w:
@ (identifiability) w({ldx}) = 0: ldn(G) = G for all G.
o (o-finite) w({W € Wi : W]y # Idig}) < co: ensures

w{Wl #Mdi}) = w( U {Wl{i,/}#ldw})

1<ij<n

IA

> w({ Wiy #Mdgy)

1<ij<n

nPw(W]g # Idg) < oo.
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Lévy—Ité—Khintchine representation

Theorem (C, 2017)

The measure w above can be characterized by unique constants ey, €1,V > 0, a
unique probability measure ¥ on 2 x 2 stochastic matrices, and a unique measure T
on the space of graph limits satisfying

T{I}) =0 and /(1 — o@)T(dv) < oo,

such that
w= Qr +VQs + epep + €1¢.
~—

Ky

() global jump: a positive fraction of all edges change

2
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Lévy—Ité—Khintchine representation

Theorem (C, 2017)

The measure w above can be characterized by unique constants ey, €1,V > 0, a
unique probability measure ¥ on 2 x 2 stochastic matrices, and a unique measure T
on the space of graph limits such that

T{I}) =0 and /(1 — o@)T(dv) < oo,

such that
w= Qr +VQ5s + epep + €1¢4.
~N~ =~

Ky Kl

(I single-vertex jump: a positive fraction of edges incident to a single vertex
change, everything else stays the same
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Lévy—Ité—Khintchine representation

Theorem (C, 2017)

The measure w above can be characterized by unique constants ey, €1,V > 0, a
unique probability measure ¥ on 2 x 2 stochastic matrices, and a unique measure T
on the space of graph limits such that

T{I}) =0 and /(1 — @) (dv) < oo,

such that
w = Qv +VQ5 +epep + e1€1.
~N O~

Ky K i

(1) single-edge flip: a single edge changes, everything else stays the same.

/[___5 AN

4 ——
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Continuous-time processes (non-Feller version)

Theorem (Crane 2016)

LetT = (T+)i>0 be an exchangeable cadlag Markov process on {0,1}" *N. Then there

are three types of discontinuity:

(I) global jump: a positive fraction of all edges changes;

(I) single-vertex jump: a positive fraction of edges incident to a single vertex
change, everything else stays the same;

(1) single-edge flip: a single edge changes, everything else stays the same.

SN AN
A T LA
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Continuous-time processes (non-Feller version)

Theorem (Crane 2016)

I = (Tt)r>0 an exchangeable cadlag Markov process on {0,1}" *N. Then there are
three types of discontinuity:

(I) global jump: a positive fraction of all edges changes;

(I) single-vertex jump: a positive fraction of edges incident to a single vertex
change, everything else stays the same;

() single-edge flip: a single edge changes, everything else stays the same.
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Continuous-time processes (non-Feller version)

Theorem (Crane 2016)
I = (Tt)r>0 an exchangeable cadlag Markov process on {0,1}" XN, Then there are
three types of discontinuity:

(I) global jump: a positive fraction of all edges changes;

(I) single-vertex jump: a positive fraction of edges incident to a single vertex
change, everything else stays the same;

(1) single-edge flip: a single edge changes, everything else stays the same.

5
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Combinatorial Lévy Processes
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Combinatorial Lévy processes (CLPs)

Define the increment between graphs Gand G’ in {0,1}"*" (n=1,2,...,c0) by
A(Ga G/) = (AG,G’(ivj))1§i,f§n’ where
0, Gj=G;

Dee (i) =Gy — Gj| = { 1 otherwisli(-::.
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Combinatorial Lévy processes (CLPs)

Define the increment between graphs G and G’ in {0,1}"*" (n=1,2,...,00) by
A(G7 G,) = (AG,G’(ivj))1§i,ans where

Ain—le g -] 0 Gi=G
aa (i) =1Gj— Gj| = 1, otherwise.

Definition (CLP)
A graph-valued Lévy process ' = (I't);>0 on {0,1}"™*" (n=1,2, ..., 00) satisfies
@ o = () (the empty graph),

@ stationary increments: for all s, t > 0, the increment A(T's, Ts1t) =p It

@ independent increments: forallfy < t; < --- < th < oo, the increments
ATy, Tgy), ..., ATy, T, _,) are independent.

o cadlag paths: I has cadlag paths in the product-discrete topology on {0, 1} * N,
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Graph-valued random walk

Let 1 be a probability distribution on {0, 1} *¥ and define I = (I't)¢=o.1
by

withlo = G

PR

i1 = ADi=Ti{_1ADi_1 A\ Dy = GAD()A-HADI,
for Do, Dy, ... i.i.d. p.

Any discrete time graph-valued Lévy process is uniquely determined by its initial
distribution and the increment measure p. given above.

Open Problem

Study the convergence rate of CLPs and/or rewiring chains to their stationary
distribution. Prove the cutoff phenomenon.

See related work:

H. Crane and S.P. Lalley. (2013). Convergence rates of Markov chains on spaces
of partitions. Electronic Journal of Probability.
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Continuous-time CLPs (Poissonian construction)

Let ;2 be a measure on {0, 1} *™ such that
p({0n}) =0 and u({Ge {0,1}"*": G|y #0p}) <o aln>1.

Let D := {(t, D)} be a Poisson point process on (0, co) x {0, 1} ¥ with intensity
dt ® p.
Construct I'* = (I'})s=0 on {0, 1} " by putting " = 0, for each n > 1 and

o ;" = A D, for all atoms (t, Dy) in D for which Dy, # Oy

o ;1 = ;1 otherwise.
Theorem (Crane, 2018)
If u is exchangeable, then it decomposes as

B= p2) ) T ) T R,
where
@ 12y governs jumps of a single loop.
@ 11,1y governs jumps of a single edge (off-diagonal).
@ /(1) governs jumps of a single vertex.
@ uy governs global jumps.

4
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Induced process on graph limits

Theorem (C. 2016; C. 2017)

LetT be an exchangeable Markov process on {0, 1} <N (with the Feller property).
Then the projection ||T'|| := (||T¢||)>0 into the space of graph limits D* exists a.s. (and
has the Feller property) with respect to the topology induced by

d(D,D'):=2""%" > |D(F)-D(F)|, D,D'eD".

n>1F,F’'e€{0,1}nxn

| A\

Open Problem
Construct and study an analog to “Brownian motion” in the space of graph limits.

@ S. Athreya, F. den Hollander and A. Réllin. (2019). Graphon-valued stochastic
processes from population genetics. arXiv:1908.06241.

| A

Open Problem

Study projection of graph-valued Lévy processes into the space of graph limits.
@ [s there a suitable notion of Lévy process in this space?
@ How does it relate to graph-valued Lévy processes?

@ Address the problem for general combinatorial Lévy processes.
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(TFt)e>0 is @ Markov process on {0, 1} N satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy

P{l1€-|Tr=Gy=P{l{,,€-|T{ =G}, forallGe {0,1}" <N,

@ projective Markov property: (I't|(s) >0 is @ Markov chain on {0, 1}"*", for every
n=1,2,....

Theorem (Discrete-time processes, C. 2017)

Then there exists an exchangeable probability measure w on {0,1} x {0, 1}-valued
arrays so that (F'm) =p(I'y,) with Ty =p o and for each m > 1

Tm=Wn(Tn_1)=Wno---oW)(5), m>1,
for Wy, Wa, ... ii.d.w and G' = W(G) defined by

0 _
G,f,:{ wp, Gj=0,

Wi, Gj=1.
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(TFt)e>0 is @ Markov process on {0, 1} XN satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy

P{ls€ - |Tt=G =P{[{,s€ |7 =G}, forallGe {0,1}"*N.

@ projective Markov property: (I't|j)t>0 iS @ Markov chain on {0,1}"*", for every
n=1,2,....

Theorem (Continuous-time processes, C. 2017)

I = (I't)r>0 an exchangeable, projective Markov process on {0, 1} *N. Then there
exists an exchangeable measure w satisfying

w({ldN}) =0 and w({W € Wk : W|[2] 75 |d[2]}) < o0

such thatT =p I},, where '}, is constructed from a Poisson point process with intensity
dt ® w.

v
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(Fe)e>0 is @ Markov process on {0, 1}" ¥ satisfying
@ exchangeability: for all o : N — N, the transition probabilities satisfy

P{Tes€-|Tt=G}=P{l{se-|T{ =G}, forallGe{0,1}" <",

@ projective Markov property: (I't|j)i=0 iS @ Markov chain on {0,1}"*", for every
n=1,2,....

Theorem (Lévy-It6—Khintchine representation, C. 2017)

The measure w above can be characterized by unique constants e, e1,v > 0, a
unique probability measure X on 2 x 2 stochastic matrices, and a unique measure T
on the space of graph limits such that

T{I}) =0 and / V@) (dv) < oo

such that
w = Qv +VQs +epep + €1€4.
~N N Y

Ky g i

v

Harry Crane Dynamic Networks Midwest Probability Colloquium 43/44



References

References:

@ H. Crane. (2015). Time-varying network models. Bernoulli, 21(3):1670-1696.

@ H. Crane. (2016). Dynamic random networks and their graph limits. Annals of
Applied Probability.

@ H. Crane. (2017). Exchangeable graph-valued Feller processes. Probability
Theory and Related Fields.

@ H. Crane. (2018). Combinatorial Lévy processes. Annals of Applied Probability.

@ H. Crane and H. Towsner. (2019+). The structure of combinatorial Markov
processes.

@ H. Crane. (2018). Probabilistic Foundations of Statistical Network Analysis,
Chapman-Hall.

Probabilistic
Found: ns

of Statistical
Network Analysis

* More information available at www.harrycrane.com/networks.htmi
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