Probabilistic Symmetry and Network Models Lecture 2

Harry Crane

October 10, 2019

Plan

- Lecture 1: Basic symmetries and network sampling.
 - H. Crane and W. Dempsey. (2018). Edge exchangeable models for interaction networks. *Journal of the American Statistical Association*.
 - H. Crane and W. Dempsey. (2019). Relational exchangeability. *Journal of Applied Probability*.
 - H. Crane and H. Towsner. (2018). Relatively exchangeable structures. *Journal of Symbolic Logic*.

• Lecture 2: Dynamic network models.

- H. Crane. (2018). Probabilistic Foundations of Statistical Network Analysis.
- H. Crane. (2015). Time-varying network models. *Bernoulli*, **21**(3):1670–1696.
- H. Crane. (2016). Dynamic random networks and their graph limits. *Annals of Applied Probability*.
- H. Crane. (2017). Exchangeable graph-valued Feller processes. *Probability Theory* and *Related Fields*.
- H. Crane. (2018). Combinatorial Lévy processes. Annals of Applied Probability.
- H. Crane and H. Towsner. (2019+). The structure of combinatorial Markov processes.

Book website: http://www.harrycrane.com/networks.html

{0,1}^{N×N}: graphs with vertex set N = {1,2,...}.
 {0,1}^{n×n}: graphs with vertex set [n] := {1,...,n}.

Basic assumptions:

 $(\Gamma_t)_{t>0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+1} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+1}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \text{ for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

{0,1}^{N×N}: graphs with vertex set N = {1,2,...}.
 {0,1}^{n×n}: graphs with vertex set [n] := {1,...,n}.

Basic assumptions:

 $(\Gamma_t)_{t\geq 0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+1} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+1}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \text{ for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

{0,1}^{N×N}: graphs with vertex set N = {1,2,...}.
 {0,1}^{n×n}: graphs with vertex set [n] := {1,...,n}.

Basic assumptions:

 $(\Gamma_t)_{t\geq 0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+1} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+1}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \text{ for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

{0,1}^{N×N}: graphs with vertex set N = {1,2,...}.
 {0,1}^{n×n}: graphs with vertex set [n] := {1,...,n}.

Basic assumptions:

 $(\Gamma_t)_{t>0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+1} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+1}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \quad \text{for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

Exchangeable, Feller \iff Exchangeable, projective

The **semigroup** $(\mathbf{P}_t)_{t \in T}$ of a Markov process Γ acts on bounded measurable functions $g : \{0, 1\}^{\mathbb{N} \times \mathbb{N}} \to \mathbb{R}$ by

$$\mathbf{P}_t g(G) := \mathbb{E}(g(\Gamma_t) \mid \Gamma_0 = G), \quad G \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$$

Definition (Feller property)

We say that Γ possesses the **Feller property** if for all bounded, continuous $g: \{0,1\}^{\mathbb{N} \times \mathbb{N}} \to \mathbb{R}$,

- (i) $G \mapsto \mathbf{P}_t g(G)$ is continuous for every t > 0 and
- (ii) $\lim_{t\downarrow 0} \mathbf{P}_t g(G) = g(G)$ for all $G \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$.

Theorem

The following are equivalent for any exchangeable Markov process Γ on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$.

- (i) Γ has the projective Markov property.
- (ii) Γ has the Feller property.

Proof:

- (i) \Rightarrow (ii): Compactness + Stone–Weierstrass theorem.
- (ii) \Rightarrow (i): Use definition of Feller on test functions $\psi_F(G) := \mathbf{1}(G|_{[n]} = F)$.

Harry Crane

$$G'_{ij} = \left\{ egin{array}{cc} W_{ij}(0), & G_{ij} = 0, \ W_{ij}(1), & G_{ij} = 1. \end{array}
ight.$$

$$G'_{ij} = \left\{ egin{array}{cc} W_{ij}(0), & G_{ij} = 0, \ W_{ij}(1), & G_{ij} = 1. \end{array}
ight.$$

$$G'_{ij} = \left\{ egin{array}{cc} W_{ij}(0), & G_{ij} = 0, \ W_{ij}(1), & G_{ij} = 1. \end{array}
ight.$$

$$G'_{ij} = \left\{ egin{array}{cc} W_{ij}(0), & G_{ij} = 0, \ W_{ij}(1), & G_{ij} = 1. \end{array}
ight.$$

$$G_{ij}^\prime = \left\{egin{array}{cc} W_{ij}(0), & G_{ij}=0,\ W_{ij}(1), & G_{ij}=1. \end{array}
ight.$$

•
$$G \mapsto W(G)$$
 is Lipschitz continuous.

Exchangeable rewiring chain

Random *W* defines a transition probability on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ by

 $P(G,\cdot):=\mathbb{P}(\{W:W(G)\in\cdot\}),\quad G\in\{0,1\}^{\mathbb{N}\times\mathbb{N}}.$

Let ω be an exchangeable probability measure on rewiring arrays.

For initial state $G \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$, construct $\Gamma_G = (\Gamma_m)_{m \ge 0}$ by

- taking W_1, W_2, \ldots i.i.d. ω and, given W_1, W_2, \ldots , putting
- $\mathbf{O} \Gamma_0 = G$ and
- $T_{m+1} = W_{m+1}(\Gamma_m) \text{ for } m \geq 0.$

Define the ω -rewiring chain with initial distribution ν by $\Gamma^{\omega,\nu} = \Gamma_G$, for *G* chosen from initial distribution ν .

Exchangeable rewiring chain

Random *W* defines a transition probability on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ by

 $P(G, \cdot) := \mathbb{P}(\{W : W(G) \in \cdot\}), \quad G \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}.$

Let ω be an exchangeable probability measure on rewiring arrays.

For initial state $G \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$, construct $\Gamma_G = (\Gamma_m)_{m \ge 0}$ by

• taking W_1, W_2, \ldots i.i.d. ω and, given W_1, W_2, \ldots , putting

2
$$\Gamma_0 = G$$
 and

Define the ω -rewiring chain with initial distribution ν by $\Gamma^{\omega,\nu} = \Gamma_G$, for *G* chosen from initial distribution ν .

Proposition

For ν an exchangeable distribution on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$, $\Gamma^{\omega,\nu}$ is exchangeable and has the Feller property.

Proof.

Exercise or see H. Crane. (2015). Time-varying network models. Bernoulli.

Key claim: the converse holds.

Harry Crane

Characterization of graph-valued Markov processes

Let $(\Gamma_m)_{m=0,1,...}$ be a discrete-time Markov chain on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ (countable graphs) which is

- exchangeable: $(\Gamma_m)_{m\geq 0} =_{\mathcal{D}} (\Gamma_m^{\sigma})_{m\geq 0}$ for all permutations $\sigma : \mathbb{N} \to \mathbb{N}$.
- **projective**: $(\Gamma_m|_{[n]})_{m\geq 0}$ is a Markov chain for all $n\geq 1$.

Theorem (Crane 2017)

Then there exists an exchangeable probability measure ω on $\{0, 1\} \times \{0, 1\}$ -valued arrays so that $(\Gamma_m) =_{\mathcal{D}}(\Gamma_m^*)$ with $\Gamma_0^* =_{\mathcal{D}} \Gamma_0$ and for each $m \ge 1$

$$\Gamma_m^* = W_m(\Gamma_{m-1}^*) = (W_m \circ \cdots \circ W_1)(\Gamma_0^*), \quad m \geq 1,$$

for W_1, W_2, \ldots i.i.d. ω and G' = W(G) defined by

$$G_{ij}^{\prime}=\left\{egin{array}{cc} W_{ij}^{0}, & G_{ij}=0,\ W_{ij}^{1}, & G_{ij}=1. \end{array}
ight.$$

Proof.

Exchangeable and Feller $\Rightarrow \Gamma_{t+1}$ is relatively exchangeable with respect to Γ_t for each *t*. Use representation for relatively exchangeable graphs to construct ω .

 $\Gamma = (\Gamma_{ij})_{i,j \ge 1}$: adjacency array of a random graph with vertex set \mathbb{N} .

Definition (Exchangeable random graph)

 Γ is exchangeable if $\Gamma^{\sigma} = (\Gamma_{\sigma(i)\sigma(j)})_{i,j\geq 1} =_{\mathcal{D}} \Gamma$ for all permutations $\sigma : \mathbb{N} \to \mathbb{N}$.

Theorem (Aldous–Hoover)

There exists a measurable function $\phi : [0, 1]^4 \to \{0, 1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma_{ij}^*)_{i,j \ge 1}$ with

$$\mathcal{T}_{ij}^* = \phi(U_{\emptyset}, U_{\{i\}}, U_{\{j\}}, U_{\{i,j\}}), \quad i, j \ge 1,$$

for $U_{\emptyset}, (U_{\{i\}})_{i \ge 1}, (U_{\{i,j\}})_{j \ge i \ge 1}$ i.i.d. Uniform[0, 1].

Definition (Relatively exchangeable random graph)

 Γ is relatively exchangeable with respect to G if, for all $S \subseteq \mathbb{N}$, $\Gamma|_{S}^{\sigma} =_{\mathcal{D}} \Gamma|_{S}$ for all automorphisms σ of $G|_{S}$.

Relative exchangeability (Crane (2017), C.-Towsner (2018))

Definition (Relatively exchangeable random graph)

 Γ is relatively exchangeable with respect to G if, for all $S \subseteq \mathbb{N}$, $\Gamma|_S^{\sigma} =_{\mathcal{D}} \Gamma|_S$ for all automorphisms σ of $G|_S$.

Relative exchangeability (Crane (2017), C.-Towsner (2018))

Definition (Relatively exchangeable random graph)

 Γ is relatively exchangeable with respect to G if, for all $S \subseteq \mathbb{N}$, $\Gamma|_{S}^{\sigma} =_{\mathcal{D}} \Gamma|_{S}$ for all automorphisms σ of $G|_{S}$.

Basic assumptions:

 $(\Gamma_t)_{t\geq 0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

- exchangeability: for all σ : N → N, (Γ^σ_t)_{t≥0} has same finite-dimensional distributions as Γ.
- projective Markov property: $(\Gamma_t|_{[n]})_{t\geq 0}$ is a Markov chain on $\{0,1\}^{n\times n}$, for every n = 1, 2, ...

Transition from G to Γ:

Observation

Exchangeability and projectivity \implies for all $S \subseteq \mathbb{N}$, the conditional distribution of $\Gamma|_S$ given G is invariant under automorphisms of $G|_S$.

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0,1\} \times [0,1]^4 \rightarrow \{0,1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma^*_{ij})_{i,j \ge 1}$ with

 $\Gamma_{ij}^* = \phi(\boldsymbol{G}_{ij}, \boldsymbol{U}_{\emptyset}, \boldsymbol{U}_{\{i\}}, \boldsymbol{U}_{\{i\}}, \boldsymbol{U}_{\{i,j\}}), \quad i,j \geq 1,$

for U_{\emptyset} , $(U_{\{i\}})_{i \ge 1}$, $(U_{\{i,j\}})_{j \ge i \ge 1}$ i.i.d. Uniform[0, 1], where

 $G_{ij} := \left\{ egin{array}{cc} 1, & (i,j) \in E, \ 0, & otherwise. \end{array}
ight.$

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0,1\} \times [0,1]^4 \rightarrow \{0,1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma^*_{ij})_{i,j \ge 1}$ with

$$\Gamma_{ij}^* = \phi(\mathbf{G}_{ij}, \mathbf{U}_{\emptyset}, \mathbf{U}_{\{i\}}, \mathbf{U}_{\{i\}}, \mathbf{U}_{\{i,j\}}), \quad i, j \geq 1,$$

for U_{\emptyset} , $(U_{\{i\}})_{i \ge 1}$, $(U_{\{i,j\}})_{j \ge i \ge 1}$ i.i.d. Uniform[0, 1], where

$$G_{ij} := \left\{ egin{array}{cc} 1, & (i,j) \in E, \ 0, & otherwise. \end{array}
ight.$$

Application:

• Generate a pair of graphs $W = (W_0, W_1)$ (jointly exchangeable) by

$$W_0(i,j) = \phi(0,\xi_{\emptyset},\xi_{\{i\}},\xi_{\{j\}},\xi_{\{i,j\}}) \text{ and } W_1(i,j) = \phi(1,\xi_{\emptyset},\xi_{\{i\}},\xi_{\{i\}},\xi_{\{i,j\}}).$$

 W = (W₀, W₁) defines a random operator {0, 1}^{N×N} → {0, 1}^{N×N} by G → G' = W(G) with

$$G'_{ij} = \left\{ egin{array}{cc} W_0(i,j), & G_{ij} = 0, \ W_1(i,j), & G_{ij} = 1. \end{array}
ight.$$

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0, 1\} \times [0, 1]^4 \rightarrow \{0, 1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma_{ij}^*)_{i,j \ge 1}$ with $\Gamma_{ij}^* = \phi(G_{ij}, U_{\emptyset}, U_{\{i\}}, U_{\{i\}}, U_{\{i,j\}})$ for $i, j \ge 1$.

Application:

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0, 1\} \times [0, 1]^4 \rightarrow \{0, 1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma_{ij}^*)_{i,j \ge 1}$ with $\Gamma_{ij}^* = \phi(G_{ij}, U_{\emptyset}, U_{\{i\}}, U_{\{i\}}, U_{\{i,j\}})$ for $i, j \ge 1$.

Application:

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0, 1\} \times [0, 1]^4 \rightarrow \{0, 1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma_{ij}^*)_{i,j \ge 1}$ with $\Gamma_{ij}^* = \phi(G_{ij}, U_{\emptyset}, U_{\{i\}}, U_{\{i\}}, U_{\{i,j\}})$ for $i, j \ge 1$.

Application:

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0, 1\} \times [0, 1]^4 \rightarrow \{0, 1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma_{ij}^*)_{i,j \ge 1}$ with $\Gamma_{ij}^* = \phi(G_{ij}, U_{\emptyset}, U_{\{i\}}, U_{\{i\}}, U_{\{i,j\}})$ for $i, j \ge 1$.

Application:

 $G = (\mathbb{N}; E)$ an undirected graph^{*} and Γ a random graph relatively exchangeable with respect to G. Then there exists $\phi : \{0, 1\} \times [0, 1]^4 \rightarrow \{0, 1\}$ such that $\Gamma =_{\mathcal{D}} \Gamma^* = (\Gamma_{ij}^*)_{i,j \ge 1}$ with $\Gamma_{ij}^* = \phi(G_{ij}, U_{\emptyset}, U_{\{i\}}, U_{\{i\}}, U_{\{i,j\}})$ for $i, j \ge 1$.

Application:

Sketch of proof

- Let $\Gamma = (\Gamma(t))_{t=0,1,...}$ be exchangeable and have the projective Markov property.
- Draw *G* from Erdős–Rényi(1/2) and consider $\mathbb{P}{\Gamma(t+1) \in \cdot | \Gamma(t) = G}$.
- Given Γ(t) = G, Γ(t + 1) is relatively exchangeable with respect to G.
 ⇒ φ : {0,1} × [0,1]⁴ → {0,1} such that

 $\Gamma_{ij}(t+1) =_{\mathcal{D}} (\phi(G_{ij}, \xi_{\emptyset}, \xi_{\{i\}}, \xi_{\{j\}}, \xi_{\{i,j\}}))_{i,j \ge 1}.$

• Now construct $W = (W_{ij})_{i,j \ge 1}$ with $W_{ij} = (W_{ij}(0), W_{ij}(1))$ by

$$W_{ij}(0) = \phi(0, \xi_{\emptyset}, \xi_{\{i\}}, \xi_{\{j\}}, \xi_{\{i,j\}})$$
$$W_{ij}(1) = \phi(1, \xi_{\emptyset}, \xi_{\{i\}}, \xi_{\{j\}}, \xi_{\{i,j\}}).$$

Let ω be the induced probability law of W.

- For any $G' \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}$, there exists (w.p. 1) $\psi_{G',G} : \mathbb{N} \to \mathbb{N}$ such that $G^{\psi_{G',G}} = G'$.
- Given $W \sim \omega$ and any $G' \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}$, we have

$$\begin{split} \mathbb{P}\{W(G') \in \cdot\} &= \mathbb{P}\{\Gamma^{\psi_{G',G}}(t+1) \in \cdot \mid \Gamma(t) = G\} \\ &= \mathbb{P}\{\Gamma^{\psi_{G',G}}(t+1) \in \cdot \mid \Gamma^{\psi_{G',G}}(t) = G'\} = P(G', \cdot) \end{split}$$

by the exchangeability & Feller property.

• Let ω be an exchangeable σ -finite measure on $\mathcal{W}_{\mathbb{N}}$, i.e.,

$$\omega(\{\mathsf{Id}_{\mathbb{N}}\}) = \mathbf{0} \quad \text{and} \quad \omega(\{\mathsf{W} \in \mathcal{W}_{\mathbb{N}} : \mathsf{W}|_{[\mathbf{2}]} \neq \mathsf{Id}_{[\mathbf{2}]}\}) < \infty.$$

- Let W := {(t, W_t)} ⊆ (0,∞) × ({0,1} × {0,1})^N be a Poisson point process with intensity dt ⊗ ω.
- Given **W**, construct $\Gamma_{\omega}^* = (\Gamma^*(t))_{t \ge 0}$ with initial state $G \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ by putting $\Gamma^*(0) = G$ and for each $n \ge 1$ and t > 0,
 - $\Gamma_t^{*[n]} = W_t^{[n]}(\Gamma_{t-}^{*[n]})$, if t > 0 is an atom of **W** for which $W_t^{[n]} \neq \mathbf{Id}_{[n]}$, or
 - $\Gamma_t^{*[n]} = \Gamma_{t-}^{*[n]}$, otherwise.

Theorem

 Γ^*_ω constructed above is exchangeable and Feller.

Key claim: Converse holds.

 $\Gamma = (\Gamma_t)_{t \ge 0}$ an exchangeable, projective Markov process on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$. Then there exists an exchangeable measure ω satisfying

$$\omega(\{\mathbf{Id}_{\mathbb{N}}\}) = 0 \quad and \quad \omega(\{W \in \mathcal{W}_{\mathbb{N}} : W|_{[2]} \neq \mathbf{Id}_{[2]}\}) < \infty$$

such that $\Gamma =_{\mathcal{D}} \Gamma_{\omega}^*$ as constructed above.

Conditions on ω :

- (identifiability) $\omega(\{ Id_{\mathbb{N}} \}) = 0$: $Id_{\mathbb{N}}(G) = G$ for all G.
- (σ -finite) $\omega(\{W \in \mathcal{W}_{\mathbb{N}} : W|_{[2]} \neq \mathsf{Id}_{[2]}\}) < \infty$: ensures

$$\begin{split} \omega(\{W|_{[n]} \neq \mathsf{Id}_{[n]}\}) &= \omega\left(\bigcup_{1 \leq i,j \leq n} \{W|_{\{i,j\}} \neq \mathsf{Id}_{\{i,j\}}\right) \\ &\leq \sum_{1 \leq i,j \leq n} \omega(\{W|_{\{i,j\}} \neq \mathsf{Id}_{\{i,j\}}) \\ &= n^2 \omega(W|_{[2]} \neq \mathsf{Id}_{[2]}) < \infty. \end{split}$$

Theorem (C, 2017)

The measure ω above can be characterized by unique constants \mathbf{e}_0 , \mathbf{e}_1 , $\mathbf{v} \ge 0$, a unique probability measure Σ on 2 × 2 stochastic matrices, and a unique measure Υ on the space of graph limits satisfying

$$\Upsilon({\mathbf{I}}) = 0$$
 and $\int (1 - v_*^{(2)}) \Upsilon(dv) < \infty$,

such that

$$\omega = \underbrace{\Omega_{\Upsilon}}_{\mu_{I}} + \mathbf{v}\Omega_{\Sigma} + \mathbf{e}_{0}\epsilon_{0} + \mathbf{e}_{1}\epsilon_{1}.$$

(I) global jump: a positive fraction of all edges change

Theorem (C, 2017)

The measure ω above can be characterized by unique constants \mathbf{e}_0 , \mathbf{e}_1 , $\mathbf{v} \ge 0$, a unique probability measure Σ on 2 × 2 stochastic matrices, and a unique measure Υ on the space of graph limits such that

$$\Upsilon({\mathbf{I}}) = 0$$
 and $\int (1 - v_*^{(2)})\Upsilon(dv) < \infty$,

such that

$$\omega = \underbrace{\Omega_{\Upsilon}}_{\mu_{I}} + \underbrace{\mathbf{v}\Omega_{\Sigma}}_{\mu_{II}} + \mathbf{e}_{0}\epsilon_{0} + \mathbf{e}_{1}\epsilon_{1}.$$

(II) **single-vertex jump**: a positive fraction of edges incident to a single vertex change, everything else stays the same

Theorem (C, 2017)

The measure ω above can be characterized by unique constants \mathbf{e}_0 , \mathbf{e}_1 , $\mathbf{v} \ge 0$, a unique probability measure Σ on 2 × 2 stochastic matrices, and a unique measure Υ on the space of graph limits such that

$$\Upsilon({\mathbf{I}}) = 0$$
 and $\int (1 - v_*^{(2)})\Upsilon(dv) < \infty$,

such that

$$\omega = \underbrace{\Omega_{\Upsilon}}_{\mu_{I}} + \underbrace{\mathbf{v}}_{\mu_{II}} + \underbrace{\mathbf{e}}_{0\epsilon_{0}} + \underbrace{\mathbf{e}}_{1\epsilon_{1}}.$$

(III) single-edge flip: a single edge changes, everything else stays the same.

Let $\Gamma = (\Gamma_t)_{t \ge 0}$ be an exchangeable càdlàg Markov process on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$. Then there are three types of discontinuity:

- (I) global jump: a positive fraction of all edges changes;
- (II) **single-vertex jump**: a positive fraction of edges incident to a single vertex change, everything else stays the same;
- (III) single-edge flip: a single edge changes, everything else stays the same.

 $\Gamma = (\Gamma_t)_{t \ge 0}$ an exchangeable càdlàg Markov process on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$. Then there are three types of discontinuity:

- (I) global jump: a positive fraction of all edges changes;
- (II) **single-vertex jump**: a positive fraction of edges incident to a single vertex change, everything else stays the same;
- (III) single-edge flip: a single edge changes, everything else stays the same.

 $\Gamma = (\Gamma_t)_{t \ge 0}$ an exchangeable càdlàg Markov process on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$. Then there are three types of discontinuity:

- (I) global jump: a positive fraction of all edges changes;
- (II) **single-vertex jump**: a positive fraction of edges incident to a single vertex change, everything else stays the same;
- (III) **single-edge flip**: a single edge changes, everything else stays the same.

Combinatorial Lévy Processes

Combinatorial Lévy processes (CLPs)

Define the **increment between graphs** *G* and *G'* in $\{0,1\}^{n \times n}$ $(n = 1, 2, ..., \infty)$ by $\Delta(G, G') \equiv (\Delta_{G,G'}(i, j))_{1 \le i,j \le n}$, where

$$\Delta_{G,G'}(i,j) = |G_{ij} - G'_{ij}| = \left\{egin{array}{cc} 0, & G_{ij} = G'_{ij},\ 1, & ext{otherwise}. \end{array}
ight.$$

Define the **increment between graphs** *G* and *G'* in $\{0,1\}^{n \times n}$ $(n = 1, 2, ..., \infty)$ by $\Delta(G, G') \equiv (\Delta_{G,G'}(i,j))_{1 \le i,j \le n}$, where

$$\Delta_{G,G'}(i,j) = |G_{ij} - G'_{ij}| = \left\{egin{array}{cc} 0, & G_{ij} = G'_{ij},\ 1, & ext{otherwise.} \end{array}
ight.$$

Definition (CLP)

A graph-valued Lévy process $\Gamma = (\Gamma_t)_{t \ge 0}$ on $\{0, 1\}^{n \times n}$ $(n = 1, 2, ..., \infty)$ satisfies

- $\Gamma_0 = \emptyset$ (the empty graph),
- stationary increments: for all $s, t \ge 0$, the increment $\Delta(\Gamma_s, \Gamma_{s+t}) =_{\mathcal{D}} \Gamma_t$.
- independent increments: for all $t_0 < t_1 < \cdots < t_n < \infty$, the increments $\Delta(\Gamma_{t_1}, \Gamma_{t_0}), \ldots, \Delta(\Gamma_{t_n}, \Gamma_{t_{n-1}})$ are independent.
- càdlàg paths: Γ has càdlàg paths in the product-discrete topology on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$.

Let μ be a probability distribution on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ and define $\Gamma = (\Gamma_t)_{t=0,1,...}$ with $\Gamma_0 = G$ by

$$\Gamma_{t+1} = \Gamma_t riangle D_t = \Gamma_{t-1} riangle D_{t-1} riangle D_t = G riangle D_0 riangle \cdots riangle D_t,$$

for $D_0, D_1, ..., i.i.d. \mu$.

Theorem

Any discrete time graph-valued Lévy process is uniquely determined by its initial distribution and the increment measure μ given above.

Open Problem

Study the convergence rate of CLPs and/or rewiring chains to their stationary distribution. Prove the cutoff phenomenon.

See related work:

H. Crane and S.P. Lalley. (2013). Convergence rates of Markov chains on spaces of partitions. Electronic Journal of Probability.

Continuous-time CLPs (Poissonian construction)

Let μ be a measure on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ such that

$$\mu(\{\mathbf{0}_{\mathbb{N}}\}) = 0 \quad \text{and} \quad \mu(\{G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}} : G|_{[n]} \neq \mathbf{0}_{[n]}\}) < \infty \quad \text{all } n \ge 1.$$

Let $\mathbf{D} := \{(t, D_t)\}$ be a Poisson point process on $(0, \infty) \times \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ with intensity $dt \otimes \mu$.

Construct $\Gamma^* = (\Gamma_t^*)_{t\geq 0}$ on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ by putting $\Gamma^{*[n]} = \mathbf{0}_{[n]}$ for each $n \geq 1$ and • $\Gamma_t^{*[n]} = \Gamma_{t-}^{*[n]} \bigtriangleup D_t$ for all atoms (t, D_t) in **D** for which $D_t|_{[n]} \neq \mathbf{0}_{[n]}$. • $\Gamma_t^{*[n]} = \Gamma_{t-}^{*[n]}$ otherwise.

Theorem (Crane, 2018)

If μ is exchangeable, then it decomposes as

 $\mu = \mu_{(2)} + \mu_{(1,1)} + \mu_{(1)} + \mu_{\emptyset},$

where

- $\mu_{(2)}$ governs jumps of a single loop.
- $\mu_{(1,1)}$ governs jumps of a single edge (off-diagonal).
- μ₍₁₎ governs jumps of a single vertex.
- μ_{\emptyset} governs global jumps.

Theorem (C. 2016; C. 2017)

Let Γ be an exchangeable Markov process on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ (with the Feller property). Then the projection $\|\Gamma\| := (\|\Gamma_t\|)_{t \ge 0}$ into the space of graph limits \mathcal{D}^* exists a.s. (and has the Feller property) with respect to the topology induced by

$$d(D,D') := 2^{-n} \sum_{n \ge 1} \sum_{F,F' \in \{0,1\}^{n \times n}} |D(F) - D(F')|, \quad D,D' \in \mathcal{D}^*.$$

Open Problem

Construct and study an analog to "Brownian motion" in the space of graph limits.

• S. Athreya, F. den Hollander and A. Röllin. (2019). Graphon-valued stochastic processes from population genetics. arXiv:1908.06241.

Open Problem

Study projection of graph-valued Lévy processes into the space of graph limits.

- Is there a suitable notion of Lévy process in this space?
- How does it relate to graph-valued Lévy processes?
- Address the problem for general combinatorial Lévy processes.

Harry Crane

Dynamic Networks

Summary

 $(\Gamma_t)_{t\geq 0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+1} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+1}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \text{ for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

• projective Markov property: $(\Gamma_t|_{[n]})_{t\geq 0}$ is a Markov chain on $\{0,1\}^{n\times n}$, for every n = 1, 2, ...

Theorem (Discrete-time processes, C. 2017)

Then there exists an exchangeable probability measure ω on $\{0, 1\} \times \{0, 1\}$ -valued arrays so that $(\Gamma_m) =_{\mathcal{D}}(\Gamma_m^*)$ with $\Gamma_0^* =_{\mathcal{D}} \Gamma_0$ and for each $m \ge 1$

$$\Gamma_m^* = W_m(\Gamma_{m-1}^*) = (W_m \circ \cdots \circ W_1)(\Gamma_0^*), \quad m \ge 1,$$

for W_1, W_2, \ldots i.i.d. ω and G' = W(G) defined by

$$G'_{ij} = \left\{ egin{array}{cc} W^0_{ij}, & G_{ij} = 0, \ W^1_{ij}, & G_{ij} = 1. \end{array}
ight.$$

 $(\Gamma_t)_{t\geq 0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+s} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+s}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \quad \text{for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

• projective Markov property: $(\Gamma_t|_{[n]})_{t\geq 0}$ is a Markov chain on $\{0,1\}^{n\times n}$, for every n = 1, 2, ...

Theorem (Continuous-time processes, C. 2017)

 $\Gamma = (\Gamma_t)_{t \ge 0}$ an exchangeable, projective Markov process on $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$. Then there exists an exchangeable measure ω satisfying

 $\omega(\{\mathsf{Id}_{\mathbb{N}}\}) = 0 \quad and \quad \omega(\{W \in \mathcal{W}_{\mathbb{N}} : W|_{[2]} \neq \mathsf{Id}_{[2]}\}) < \infty$

such that $\Gamma =_{\mathcal{D}} \Gamma_{\omega}^*$, where Γ_{ω}^* is constructed from a Poisson point process with intensity $dt \otimes \omega$.

Summary

 $(\Gamma_t)_{t\geq 0}$ is a Markov process on $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ satisfying

• exchangeability: for all $\sigma : \mathbb{N} \to \mathbb{N}$, the transition probabilities satisfy

 $\mathbb{P}\{\Gamma_{t+s} \in \cdot \mid \Gamma_t = G\} = \mathbb{P}\{\Gamma_{t+s}^{\sigma} \in \cdot \mid \Gamma_t^{\sigma} = G\}, \text{ for all } G \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}.$

• projective Markov property: $(\Gamma_t|_{[n]})_{t\geq 0}$ is a Markov chain on $\{0,1\}^{n\times n}$, for every n = 1, 2, ...

Theorem (Lévy–Itô–Khintchine representation, C. 2017)

The measure ω above can be characterized by unique constants \mathbf{e}_0 , \mathbf{e}_1 , $\mathbf{v} \ge 0$, a unique probability measure Σ on 2 × 2 stochastic matrices, and a unique measure Υ on the space of graph limits such that

$$\Upsilon(\{\mathbf{I}\}) = 0 \quad \text{and} \quad \int (1 - \upsilon_*^{(2)}) \Upsilon(d\upsilon) < \infty,$$

such that

$$\omega = \underbrace{\Omega_{\Upsilon}}_{\mu_{I}} + \underbrace{\mathbf{v}\Omega_{\Sigma}}_{\mu_{II}} + \underbrace{\mathbf{e}_{0}\epsilon_{0} + \mathbf{e}_{1}\epsilon_{1}}_{\mu_{III}}.$$

References

References:

- H. Crane. (2015). Time-varying network models. Bernoulli, 21(3):1670–1696.
- H. Crane. (2016). Dynamic random networks and their graph limits. *Annals of Applied Probability*.
- H. Crane. (2017). Exchangeable graph-valued Feller processes. *Probability Theory and Related Fields*.
- H. Crane. (2018). Combinatorial Lévy processes. Annals of Applied Probability.
- H. Crane and H. Towsner. (2019+). The structure of combinatorial Markov processes.
- H. Crane. (2018). *Probabilistic Foundations of Statistical Network Analysis*, Chapman–Hall.

* More information available at www.harrycrane.com/networks.html