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Time-varying network models

{0, 1}N ×N : graphs with vertex set N = {1, 2, . . .}.
{0, 1}n×n: graphs with vertex set [n] := {1, . . . , n}.

Basic assumptions:

(Γt )t≥0 is a Markov process on {0, 1}N ×N satisfying

exchangeability: for all σ : N→ N, the transition probabilities satisfy

P{Γt+1 ∈ · | Γt = G} = P{Γσt+1 ∈ · | Γσt = G}, for all G ∈ {0, 1}N ×N .

projective Markov property: (Γt |[n])t≥0 is a Markov chain on {0, 1}n×n, for every
n = 1, 2, . . ..
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Exchangeable, Feller ⇐⇒ Exchangeable, projective

The semigroup (Pt )t∈T of a Markov process Γ acts on bounded measurable functions
g : {0, 1}N ×N → R by

Ptg(G) := E(g(Γt ) | Γ0 = G), G ∈ {0, 1}N ×N .

Definition (Feller property)
We say that Γ possesses the Feller property if for all bounded, continuous
g : {0, 1}N ×N → R,

(i) G 7→ Ptg(G) is continuous for every t > 0 and

(ii) limt↓0 Ptg(G) = g(G) for all G ∈ {0, 1}N ×N .

Theorem

The following are equivalent for any exchangeable Markov process Γ on {0, 1}N ×N .

(i) Γ has the projective Markov property.

(ii) Γ has the Feller property.

Proof:
(i)⇒ (ii): Compactness + Stone–Weierstrass theorem.
(ii)⇒ (i): Use definition of Feller on test functions ψF (G) := 1(G|[n] = F}.
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Rewiring operator

A {0, 1} × {0, 1}-valued array W = (Wij )i,j≥1 defines a map {0, 1}N ×N → {0, 1}N ×N ,
G 7→ W (G) = (G′ij )i,j≥1 with

G′ij =

{
Wij (0), Gij = 0,
Wij (1), Gij = 1.
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Rewiring operator

A {0, 1} × {0, 1}-valued array W = (Wij )i,j≥1 defines a map {0, 1}N ×N → {0, 1}N ×N ,
G 7→ W (G) = (G′ij )i,j≥1 with

G′ij =

{
Wij (0), Gij = 0,
Wij (1), Gij = 1.

G 7→ W (G) is Lipschitz continuous.
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Exchangeable rewiring chain

Random W defines a transition probability on {0, 1}N ×N by

P(G, ·) := P({W : W (G) ∈ ·}), G ∈ {0, 1}N ×N .

Let ω be an exchangeable probability measure on rewiring arrays.

For initial state G ∈ {0, 1}N ×N , construct ΓG = (Γm)m≥0 by
1 taking W1,W2, . . . i.i.d. ω and, given W1,W2, . . ., putting
2 Γ0 = G and
3 Γm+1 = Wm+1(Γm) for m ≥ 0.

Define the ω-rewiring chain with initial distribution ν by Γω,ν = ΓG, for G chosen
from initial distribution ν.

Proposition

For ν an exchangeable distribution on {0, 1}N ×N , Γω,ν is exchangeable and has the
Feller property.

Proof.
Exercise or see H. Crane. (2015). Time-varying network models. Bernoulli.

Key claim: the converse holds.
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Characterization of graph-valued Markov processes

Let (Γm)m=0,1,... be a discrete-time Markov chain on {0, 1}N ×N (countable graphs)
which is

exchangeable: (Γm)m≥0 =D(Γσm)m≥0 for all permutations σ : N → N.
projective: (Γm|[n])m≥0 is a Markov chain for all n ≥ 1.

Theorem (Crane 2017)
Then there exists an exchangeable probability measure ω on {0, 1} × {0, 1}-valued
arrays so that (Γm) =D(Γ∗m) with Γ∗0 =D Γ0 and for each m ≥ 1

Γ∗m = Wm(Γ∗m−1) = (Wm ◦ · · · ◦W1)(Γ∗0 ), m ≥ 1,

for W1,W2, . . . i.i.d. ω and G′ = W (G) defined by

G′ij =

{
W 0

ij , Gij = 0,
W 1

ij , Gij = 1.

Proof.
Exchangeable and Feller⇒ Γt+1 is relatively exchangeable with respect to Γt for each
t . Use representation for relatively exchangeable graphs to construct ω.
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Recall: Exchangeable random graphs (Aldous, 1979; Hoover, 1981)

Γ = (Γij )i,j≥1: adjacency array of a random graph with vertex set N.

Definition (Exchangeable random graph)
Γ is exchangeable if Γσ = (Γσ(i)σ(j))i,j≥1 =D Γ for all permutations σ : N → N.

Theorem (Aldous–Hoover)

There exists a measurable function φ : [0, 1]4 → {0, 1} such that Γ =D Γ∗ = (Γ∗ij )i,j≥1

with
Γ∗ij = φ(U∅,U{i},U{j},U{i,j}), i, j ≥ 1,

for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1].

Harry Crane Dynamic Networks Midwest Probability Colloquium 15 / 44



Recall: Relative exchangeability (Crane (2017), C.–Towsner (2018))

Definition (Relatively exchangeable random graph)
Γ is relatively exchangeable with respect to G if, for all S ⊆ N, Γ|σS =D Γ|S for all
automorphisms σ of G|S .
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Relative exchangeability (Crane (2017), C.–Towsner (2018))

Definition (Relatively exchangeable random graph)
Γ is relatively exchangeable with respect to G if, for all S ⊆ N, Γ|σS =D Γ|S for all
automorphisms σ of G|S .
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Exchangeable + Feller ⇔ Relatively exchangeable transition probability

Basic assumptions:

(Γt )t≥0 is a Markov process on {0, 1}N ×N satisfying

exchangeability: for all σ : N→ N, (Γσt )t≥0 has same finite-dimensional
distributions as Γ.

projective Markov property: (Γt |[n])t≥0 is a Markov chain on {0, 1}n×n, for every
n = 1, 2, . . ..

Transition from G to Γ:

Observation
Exchangeability and projectivity =⇒ for all S ⊆ N, the conditional distribution of Γ|S
given G is invariant under automorphisms of G|S .
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Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with

Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1,

for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1], where

Gij :=

{
1, (i, j) ∈ E ,
0, otherwise.

Application:
Generate a pair of graphs W = (W0,W1) (jointly exchangeable) by

W0(i, j) = φ(0, ξ∅, ξ{i}, ξ{j}, ξ{i,j}) and

W1(i, j) = φ(1, ξ∅, ξ{i}, ξ{j}, ξ{i,j}).

W = (W0,W1) defines a random operator {0, 1}N ×N → {0, 1}N ×N by
G 7→ G′ = W (G) with

G′ij =

{
W0(i, j), Gij = 0,
W1(i, j), Gij = 1.

Harry Crane Dynamic Networks Midwest Probability Colloquium 20 / 44



Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with

Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}), i, j ≥ 1,

for U∅, (U{i})i≥1, (U{i,j})j≥i≥1 i.i.d. Uniform[0, 1], where

Gij :=

{
1, (i, j) ∈ E ,
0, otherwise.

Application:
Generate a pair of graphs W = (W0,W1) (jointly exchangeable) by

W0(i, j) = φ(0, ξ∅, ξ{i}, ξ{j}, ξ{i,j}) and

W1(i, j) = φ(1, ξ∅, ξ{i}, ξ{j}, ξ{i,j}).

W = (W0,W1) defines a random operator {0, 1}N ×N → {0, 1}N ×N by
G 7→ G′ = W (G) with

G′ij =

{
W0(i, j), Gij = 0,
W1(i, j), Gij = 1.

Harry Crane Dynamic Networks Midwest Probability Colloquium 20 / 44



Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}) for i, j ≥ 1.

Application:
Generate a pair of graphs (W0,W1) (jointly exchangeable).

Harry Crane Dynamic Networks Midwest Probability Colloquium 21 / 44



Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}) for i, j ≥ 1.

Application:
Generate a pair of graphs (W0,W1) (jointly exchangeable).

Harry Crane Dynamic Networks Midwest Probability Colloquium 22 / 44



Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}) for i, j ≥ 1.

Application:
Generate a pair of graphs (W0,W1) (jointly exchangeable).

Harry Crane Dynamic Networks Midwest Probability Colloquium 23 / 44



Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}) for i, j ≥ 1.

Application:
Generate a pair of graphs (W0,W1) (jointly exchangeable).

Harry Crane Dynamic Networks Midwest Probability Colloquium 24 / 44



Application of representation theorem

Theorem (Crane (2017))
G = (N; E) an undirected graph? and Γ a random graph relatively exchangeable with
respect to G. Then there exists φ : {0, 1} × [0, 1]4 → {0, 1} such that
Γ =D Γ∗ = (Γ∗ij )i,j≥1 with Γ∗ij = φ(Gij ,U∅,U{i},U{j},U{i,j}) for i, j ≥ 1.

Application:
Generate a pair of graphs (W0,W1) (jointly exchangeable).

Harry Crane Dynamic Networks Midwest Probability Colloquium 25 / 44



Sketch of proof

Let Γ = (Γ(t))t=0,1,... be exchangeable and have the projective Markov property.
Draw G from Erdős–Rényi(1/2) and consider P{Γ(t + 1) ∈ · | Γ(t) = G}.
Given Γ(t) = G, Γ(t + 1) is relatively exchangeable with respect to G.
=⇒ φ : {0, 1} × [0, 1]4 → {0, 1} such that

Γij (t + 1) =D(φ(Gij , ξ∅, ξ{i}, ξ{j}, ξ{i,j}))i,j≥1.

Now construct W = (Wij )i,j≥1 with Wij = (Wij (0),Wij (1)) by

Wij (0) = φ(0, ξ∅, ξ{i}, ξ{j}, ξ{i,j})

Wij (1) = φ(1, ξ∅, ξ{i}, ξ{j}, ξ{i,j}).

Let ω be the induced probability law of W .
For any G′ ∈ {0, 1}N ×N , there exists (w.p. 1) ψG′,G : N → N such that
GψG′,G = G′.
Given W ∼ ω and any G′ ∈ {0, 1}N ×N , we have

P{W (G′) ∈ ·} = P{ΓψG′,G (t + 1) ∈ · | Γ(t) = G}
= P{ΓψG′,G (t + 1) ∈ · | ΓψG′,G (t) = G′} = P(G′, ·)

by the exchangeability & Feller property.
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Continuous-time processes (Poissonian construction)

Let ω be an exchangeable σ-finite measure onWN , i.e.,

ω({IdN}) = 0 and ω({W ∈ WN : W|[2] 6= Id[2]}) <∞.

Let W := {(t ,Wt )} ⊆ (0,∞)× ({0, 1} × {0, 1})N be a Poisson point process with
intensity dt ⊗ ω.
Given W, construct Γ∗ω = (Γ∗(t))t≥0 with initial state G ∈ {0, 1}N ×N by putting
Γ∗(0) = G and for each n ≥ 1 and t > 0,

Γ
∗[n]
t = W [n]

t (Γ
∗[n]
t− ), if t > 0 is an atom of W for which W [n]

t 6= Id[n], or

Γ
∗[n]
t = Γ

∗[n]
t− , otherwise.

Theorem
Γ∗ω constructed above is exchangeable and Feller.

Key claim: Converse holds.
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Continuous-time processes

Theorem (Crane 2017)

Γ = (Γt )t≥0 an exchangeable, projective Markov process on {0, 1}N ×N . Then there
exists an exchangeable measure ω satisfying

ω({IdN}) = 0 and ω({W ∈ WN : W |[2] 6= Id[2]}) <∞

such that Γ =D Γ∗ω as constructed above.

Conditions on ω:

(identifiability) ω({IdN}) = 0: IdN(G) = G for all G.

(σ-finite) ω({W ∈ WN : W |[2] 6= Id[2]}) <∞: ensures

ω({W |[n] 6= Id[n]}) = ω

 ⋃
1≤i,j≤n

{W |{i,j} 6= Id{i,j}


≤

∑
1≤i,j≤n

ω({W |{i,j} 6= Id{i,j})

= n2ω(W |[2] 6= Id[2]) <∞.
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Lévy–Itô–Khintchine representation

Theorem (C, 2017)
The measure ω above can be characterized by unique constants e0, e1, v ≥ 0, a
unique probability measure Σ on 2× 2 stochastic matrices, and a unique measure Υ
on the space of graph limits satisfying

Υ({I}) = 0 and
∫

(1− υ(2)
∗ )Υ(dυ) <∞,

such that
ω = ΩΥ︸︷︷︸

µI

+ vΩΣ + e0ε0 + e1ε1.

(I) global jump: a positive fraction of all edges change
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unique probability measure Σ on 2× 2 stochastic matrices, and a unique measure Υ
on the space of graph limits such that

Υ({I}) = 0 and
∫

(1− υ(2)
∗ )Υ(dυ) <∞,

such that
ω = ΩΥ︸︷︷︸

µI

+vΩΣ︸︷︷︸
µII

+ e0ε0 + e1ε1.

(II) single-vertex jump: a positive fraction of edges incident to a single vertex
change, everything else stays the same
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Lévy–Itô–Khintchine representation

Theorem (C, 2017)
The measure ω above can be characterized by unique constants e0, e1, v ≥ 0, a
unique probability measure Σ on 2× 2 stochastic matrices, and a unique measure Υ
on the space of graph limits such that

Υ({I}) = 0 and
∫

(1− υ(2)
∗ )Υ(dυ) <∞,

such that
ω = ΩΥ︸︷︷︸

µI

+ vΩΣ︸︷︷︸
µII

+e0ε0 + e1ε1︸ ︷︷ ︸
µIII

.

(III) single-edge flip: a single edge changes, everything else stays the same.
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Continuous-time processes (non-Feller version)

Theorem (Crane 2016)

Let Γ = (Γt )t≥0 be an exchangeable càdlàg Markov process on {0, 1}N ×N . Then there
are three types of discontinuity:

(I) global jump: a positive fraction of all edges changes;

(II) single-vertex jump: a positive fraction of edges incident to a single vertex
change, everything else stays the same;

(III) single-edge flip: a single edge changes, everything else stays the same.
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Combinatorial Lévy Processes
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Combinatorial Lévy processes (CLPs)

Define the increment between graphs G and G′ in {0, 1}n×n (n = 1, 2, . . . ,∞) by
∆(G,G′) ≡ (∆G,G′(i, j))1≤i,j≤n, where

∆G,G′(i, j) = |Gij −G′ij | =

{
0, Gij = G′ij ,
1, otherwise.
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Define the increment between graphs G and G′ in {0, 1}n×n (n = 1, 2, . . . ,∞) by
∆(G,G′) ≡ (∆G,G′(i, j))1≤i,j≤n, where

∆G,G′(i, j) = |Gij −G′ij | =

{
0, Gij = G′ij ,
1, otherwise.

Definition (CLP)

A graph-valued Lévy process Γ = (Γt )t≥0 on {0, 1}n×n (n = 1, 2, . . . ,∞) satisfies

Γ0 = ∅ (the empty graph),

stationary increments: for all s, t ≥ 0, the increment ∆(Γs, Γs+t ) =D Γt .

independent increments: for all t0 < t1 < · · · < tn <∞, the increments
∆(Γt1 , Γt0 ), . . . ,∆(Γtn , Γtn−1 ) are independent.

càdlàg paths: Γ has càdlàg paths in the product-discrete topology on {0, 1}N ×N .
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Graph-valued random walk

Let µ be a probability distribution on {0, 1}N ×N and define Γ = (Γt )t=0,1,... with Γ0 = G
by

Γt+1 = Γt 4 Dt = Γt−14 Dt−14 Dt = G4 D04 · · ·4 Dt ,

for D0,D1, . . . i.i.d. µ.

Theorem
Any discrete time graph-valued Lévy process is uniquely determined by its initial
distribution and the increment measure µ given above.

Open Problem
Study the convergence rate of CLPs and/or rewiring chains to their stationary
distribution. Prove the cutoff phenomenon.

See related work:

H. Crane and S.P. Lalley. (2013). Convergence rates of Markov chains on spaces
of partitions. Electronic Journal of Probability.
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Continuous-time CLPs (Poissonian construction)

Let µ be a measure on {0, 1}N ×N such that

µ({0N}) = 0 and µ({G ∈ {0, 1}N ×N : G|[n] 6= 0[n]}) <∞ all n ≥ 1.

Let D := {(t ,Dt )} be a Poisson point process on (0,∞)× {0, 1}N ×N with intensity
dt ⊗ µ.

Construct Γ∗ = (Γ∗t )t≥0 on {0, 1}N ×N by putting Γ∗[n] = 0[n] for each n ≥ 1 and
Γ
∗[n]
t = Γ

∗[n]
t− 4 Dt for all atoms (t ,Dt ) in D for which Dt |[n] 6= 0[n].

Γ
∗[n]
t = Γ

∗[n]
t− otherwise.

Theorem (Crane, 2018)
If µ is exchangeable, then it decomposes as

µ = µ(2) + µ(1,1) + µ(1) + µ∅,

where

µ(2) governs jumps of a single loop.

µ(1,1) governs jumps of a single edge (off-diagonal).

µ(1) governs jumps of a single vertex.

µ∅ governs global jumps.
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Induced process on graph limits

Theorem (C. 2016; C. 2017)

Let Γ be an exchangeable Markov process on {0, 1}N ×N (with the Feller property).
Then the projection ‖Γ‖ := (‖Γt‖)t≥0 into the space of graph limits D∗ exists a.s. (and
has the Feller property) with respect to the topology induced by

d(D,D′) := 2−n
∑
n≥1

∑
F ,F ′∈{0,1}n×n

|D(F )− D(F ′)|, D,D′ ∈ D∗.

Open Problem
Construct and study an analog to “Brownian motion” in the space of graph limits.

S. Athreya, F. den Hollander and A. Röllin. (2019). Graphon-valued stochastic
processes from population genetics. arXiv:1908.06241.

Open Problem
Study projection of graph-valued Lévy processes into the space of graph limits.

Is there a suitable notion of Lévy process in this space?

How does it relate to graph-valued Lévy processes?

Address the problem for general combinatorial Lévy processes.
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Summary

(Γt )t≥0 is a Markov process on {0, 1}N ×N satisfying

exchangeability: for all σ : N→ N, the transition probabilities satisfy

P{Γt+1 ∈ · | Γt = G} = P{Γσt+1 ∈ · | Γσt = G}, for all G ∈ {0, 1}N ×N .

projective Markov property: (Γt |[n])t≥0 is a Markov chain on {0, 1}n×n, for every
n = 1, 2, . . ..

Theorem (Discrete-time processes, C. 2017)
Then there exists an exchangeable probability measure ω on {0, 1} × {0, 1}-valued
arrays so that (Γm) =D(Γ∗m) with Γ∗0 =D Γ0 and for each m ≥ 1

Γ∗m = Wm(Γ∗m−1) = (Wm ◦ · · · ◦W1)(Γ∗0 ), m ≥ 1,

for W1,W2, . . . i.i.d. ω and G′ = W (G) defined by

G′ij =

{
W 0

ij , Gij = 0,
W 1

ij , Gij = 1.
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Summary

(Γt )t≥0 is a Markov process on {0, 1}N ×N satisfying

exchangeability: for all σ : N→ N, the transition probabilities satisfy

P{Γt+s ∈ · | Γt = G} = P{Γσt+s ∈ · | Γσt = G}, for all G ∈ {0, 1}N ×N .

projective Markov property: (Γt |[n])t≥0 is a Markov chain on {0, 1}n×n, for every
n = 1, 2, . . ..

Theorem (Continuous-time processes, C. 2017)

Γ = (Γt )t≥0 an exchangeable, projective Markov process on {0, 1}N ×N . Then there
exists an exchangeable measure ω satisfying

ω({IdN}) = 0 and ω({W ∈ WN : W |[2] 6= Id[2]}) <∞

such that Γ =D Γ∗ω, where Γ∗ω is constructed from a Poisson point process with intensity
dt ⊗ ω.
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Summary

(Γt )t≥0 is a Markov process on {0, 1}N ×N satisfying

exchangeability: for all σ : N→ N, the transition probabilities satisfy

P{Γt+s ∈ · | Γt = G} = P{Γσt+s ∈ · | Γσt = G}, for all G ∈ {0, 1}N ×N .

projective Markov property: (Γt |[n])t≥0 is a Markov chain on {0, 1}n×n, for every
n = 1, 2, . . ..

Theorem (Lévy–Itô–Khintchine representation, C. 2017)
The measure ω above can be characterized by unique constants e0, e1, v ≥ 0, a
unique probability measure Σ on 2× 2 stochastic matrices, and a unique measure Υ
on the space of graph limits such that

Υ({I}) = 0 and
∫

(1− υ(2)
∗ )Υ(dυ) <∞,

such that
ω = ΩΥ︸︷︷︸

µI

+ vΩΣ︸︷︷︸
µII

+e0ε0 + e1ε1︸ ︷︷ ︸
µIII

.
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